You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Leading experts across smooth dynamics and ergodic theory present a broad research perspective and set an agenda for future work.
Now with an extensive introduction to fractal geometry Revised and updated, Encounters with Chaos and Fractals, Second Edition provides an accessible introduction to chaotic dynamics and fractal geometry for readers with a calculus background. It incorporates important mathematical concepts associated with these areas and backs up the definitions and results with motivation, examples, and applications. Laying the groundwork for later chapters, the text begins with examples of mathematical behavior exhibited by chaotic systems, first in one dimension and then in two and three dimensions. Focusing on fractal geometry, the author goes on to introduce famous infinitely complicated fractals. He analyzes them and explains how to obtain computer renditions of them. The book concludes with the famous Julia sets and the Mandelbrot set. With more than enough material for a one-semester course, this book gives readers an appreciation of the beauty and diversity of applications of chaotic dynamics and fractal geometry. It shows how these subjects continue to grow within mathematics and in many other disciplines.
This book provides a broad introduction to the subject of dynamical systems, suitable for a one- or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to such areas as number theory, data storage, and Internet search engines. This book grew out of lecture notes from the graduate dynamical systems course at the University of Maryland, College Park, and reflects not only the tastes of the authors, but also to some extent the collective opinion of the Dynamics Group at the University of Maryland, which includes experts in virtually every major area of dynamical systems.
Encounters with Chaos and Fractals, Third Edition provides an accessible introduction to chaotic dynamics and fractal geometry. It incorporates important mathematical concepts and backs up the definitions and results with motivation, examples, and applications. The Third Edition updates this classic book for a modern audience. New applications on contemporary topics, like data science and mathematical modelling, appear throughout. Coding activities are transitioned to open-source programming languages, including Python. The text begins with examples of mathematical behavior exhibited by chaotic systems, first in one dimension and then in two and three dimensions. Focusing on fractal geometry...
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.
On t.p. "o2olo+o1" and "on" are subscript.
First we investigate the structure of Lie algebras with invariant cones and give a characterization of those Lie algebras containing pointed and generating invariant cones. Then we study the global structure of invariant Lie semigroups, and how far Lie's third theorem remains true for invariant cones and Lie semigroups.
It is the goal of the memoir to develop a functorial transfer of properties between [italic capital]A and [script capital]M[subscript italic capital]E, the category of modules over [italic capital]E, that is more sensitive than the traditional starting point, Hom([italic capital]A, ยท). This memoir should be accessible to anyone who has a working knowledge of rings, modules, functors, and categories equivalent to that gained by reading Anderson and Fuller's text "Rings and Categories of Modules."
A multiple solution theory to the Plateau problem in a Riemannian manifold is established. In [italic capital]S[superscript italic]n, the existence of two solutions to this problem is obtained. The Morse-Tompkins-Shiffman Theorem is extended to the case when the ambient space admits no minimal sphere.