You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
There are a wide range of variables for actuaries to consider when calculating a motorist’s insurance premium, such as age, gender and type of vehicle. Further to these factors, motorists’ rates are subject to experience rating systems, including credibility mechanisms and Bonus Malus systems (BMSs). Actuarial Modelling of Claim Counts presents a comprehensive treatment of the various experience rating systems and their relationships with risk classification. The authors summarize the most recent developments in the field, presenting ratemaking systems, whilst taking into account exogenous information. The text: Offers the first self-contained, practical approach to a priori and a poster...
The increasing complexity of insurance and reinsurance products has seen a growing interest amongst actuaries in the modelling of dependent risks. For efficient risk management, actuaries need to be able to answer fundamental questions such as: Is the correlation structure dangerous? And, if yes, to what extent? Therefore tools to quantify, compare, and model the strength of dependence between different risks are vital. Combining coverage of stochastic order and risk measure theories with the basics of risk management and stochastic dependence, this book provides an essential guide to managing modern financial risk. * Describes how to model risks in incomplete markets, emphasising insurance ...
Modern Actuarial Risk Theory contains what every actuary needs to know about non-life insurance mathematics. It starts with the standard material like utility theory, individual and collective model and basic ruin theory. Other topics are risk measures and premium principles, bonus-malus systems, ordering of risks and credibility theory. It also contains some chapters about Generalized Linear Models, applied to rating and IBNR problems. As to the level of the mathematics, the book would fit in a bachelors or masters program in quantitative economics or mathematical statistics. This second and much expanded edition emphasizes the implementation of these techniques through the use of R. This free but incredibly powerful software is rapidly developing into the de facto standard for statistical computation, not just in academic circles but also in practice. With R, one can do simulations, find maximum likelihood estimators, compute distributions by inverting transforms, and much more.
A one-stop shop for actuaries and risk managers, this handbook covers general solvency and risk management topics as well issues pertaining to the European Solvency II project. It focuses on the valuation of assets and liabilities, the calculation of capital requirement, and the calculation of the standard formula for the Solvency II project. The author describes valuation and investment approaches, explains how to develop models and measure various risks, and presents approaches for calculating minimum capital requirements based on CEIOPS final advice. Updates on solvency projects and issues are available at www.SolvencyII.nu
The goal of this thesis is to treat the temporal tail dependence and the cross-sectional tail dependence of heavy tailed functional time series. Functional time series are aimed at modelling spatio-temporal phenomena; for instance rain, temperature, pollution on a given geographical area, with temporally dependent observations. Heavy tails mean that the series can exhibit much higher spikes than with Gaussian distributions for instance. In such cases, second moments cannot be assumed to exist, violating the basic assumption in standard functional data analysis based on the sequence of autocovariance operators. As for random variables, regular variation provides the mathematical backbone for ...
Developing techniques for assessing various risks and calculating probabilities of ruin and survival are exciting topics for mathematically-inclined academics. For practicing actuaries and financial engineers, the resulting insights have provided enormous opportunities but also created serious challenges to overcome, thus facilitating closer cooperation between industries and academic institutions. In this book, several renown researchers with extensive interdisciplinary research experiences share their thoughts that, in one way or another, contribute to the betterment of practice and theory of decision making under uncertainty. Behavioral, cultural, mathematical, and statistical aspects of risk assessment and modelling have been explored, and have been often illustrated using real and simulated data. Topics range from financial and insurance risks to security-type risks, from one-dimensional to multi- and even infinite-dimensional risks. The articles in the book were written with a broad audience in mind and should provide enjoyable reading for those with university level degrees and/or those who have studied for accreditation by various actuarial and financial societies.
Mortality improvements, uncertainty in future mortality trends and the relevant impact on life annuities and pension plans constitute important topics in the field of actuarial mathematics and life insurance techniques. In particular, actuarial calculations concerning pensions, life annuities and other living benefits (provided, for example, by long-term care insurance products and whole life sickness covers) are based on survival probabilities which necessarily extend over a long time horizon. In order to avoid underestimation of the related liabilities, the insurance company (or the pension plan) must adopt an appropriate forecast of future mortality. Great attention is currently being dev...
Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.
Risk has been described in the past by a simple measure, such as the variance, and risk attitude is often considered simply a degree of risk aversion. However, this viewpoint is usually not sufficient. Risk Measures and Attitudes collects contributions which illustrate how modern approaches to both risk measures and risk attitudes are inevitably intertwined. The settings under which this is discussed include portfolio choice, mitigating credit risk and comparing risky alternatives. This book will be a useful study aid for students and researchers of actuarial science or risk management as well as practitioners.
The book contains important material on topics that are relevant for recent insurance and actuarial developments including determining solvency measures, fair-value computations, reserving, ranking of risks, modelling dependencies and the use of generalized linear models. Numerous exercises and the hints for solving them make the book useful as a textbook. Practical paradigms in insurance are presented in a way that is appealing to actuaries in their daily business.