You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds", published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold. The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse complex and the Morse homology, and develops some of their applications. Morse homology also serves a simple model for Floer homology, which is covered in the second part. Floer homology is an infinite-...
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. This book serves as an introduction to symplectic and contact geometry for graduate students, exploring the underlying geometry of integrable Hamiltonian systems. Includes exercises designed to complement the expositiont, and up-to-date references.
Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established iby many mathematicians. This book presents some of these techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the wealth of original ideas will make it also appeal to researchers.
This book is devoted to pseudo-holomorphic curve methods in symplectic geometry. It contains an introduction to symplectic geometry and relevant techniques of Riemannian geometry, proofs of Gromov's compactness theorem, an investigation of local properties of holomorphic curves, including positivity of intersections, and applications to Lagrangian embeddings problems. The chapters are based on a series of lectures given previously by the authors M. Audin, A. Banyaga, P. Gauduchon, F. Labourie, J. Lafontaine, F. Lalonde, Gang Liu, D. McDuff, M.-P. Muller, P. Pansu, L. Polterovich, J.C. Sikorav. In an attempt to make this book accessible also to graduate students, the authors provide the necessary examples and techniques needed to understand the applications of the theory. The exposition is essentially self-contained and includes numerous exercises.
This book gives a comprehensive treatment of photocatalysis, a topic of increasing importance due to its essential role in many of todays environmental and energy-source problems. The first part presents a brief introduction to the principles and fundamental aspects of photocatalysis including photoelectric chemical semiconductors. Part II describes applications to environmental cleaning, such as water purification and cleaning of the atmosphere. Part III discusses applications to photoenergy conversion, for example water decomposition with TiO2, semiconductors and metal complexes. Serving as a timely and convenient reference source including exciting new advances, the book will appeal to academic and industrial researchers as well graduate and advanced undergraduate students.
How did Pierre Fatou and Gaston Julia create what we now call Complex Dynamics, in the context of the early twentieth century and especially of the First World War? The book is based partly on new, unpublished sources. Who were Pierre Fatou, Gaston Julia, Paul Montel? New biographical information is given on the little known mathematician that was Pierre Fatou. How did the WW1 injury of Julia influence mathematical life in France? From the reviews of the French version: "Audin’s book is ... filled with marvelous biographical information and analysis, dealing not just with the men mentioned in the book’s title but a large number of other players, too ... [It] addresses itself to scholars for whom the history of mathematics has a particular resonance and especially to mathematicians active, or even with merely an interest, in complex dynamics. ... presents it all to the reader in a very appealing form." (Michael Berg, The Mathematical Association of America, October 2009)
Since its inception in Paris in 1960, the OuLiPo--ouvroir de littérature potentielle, or workshop for potential literature--has continually expanded our sense of what writing can do. It's produced, among many other marvels, a detective novel without the letter e (and a sequel of sorts without a, i, o, u, or y); an epic poem structured by the Parisian métro system; a story in the form of a tarot reading; a poetry book in the form of a game of go; and a suite of sonnets that would take almost 200 million years to read completely. Lovers of literature are likely familiar with the novels of the best-known Oulipians--Italo Calvino, Georges Perec, Harry Mathews, Raymond Queneau--and perhaps even...
Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a colle...
Geometry, this very ancient field of study of mathematics, frequently remains too little familiar to students. Michle Audin, professor at the University of Strasbourg, has written a book allowing them to remedy this situation and, starting from linear algebra, extend their knowledge of affine, Euclidean and projective geometry, conic sections and quadrics, curves and surfaces. It includes many nice theorems like the nine-point circle, Feuerbach's theorem, and so on. Everything is presented clearly and rigourously. Each property is proved, examples and exercises illustrate the course content perfectly. Precise hints for most of the exercises are provided at the end of the book. This very comprehensive text is addressed to students at upper undergraduate and Master's level to discover geometry and deepen their knowledge and understanding.