You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The main purpose of the present volume is to give a survey of some of the most significant achievements obtained by topological methods in nonlin ear analysis during the last three decades. It is intended, at least partly, as a continuation of Topological Nonlinear Analysis: Degree, Singularity and Varia tions, published in 1995. The survey articles presented are concerned with three main streams of research, that is topological degree, singularity theory and variational methods, They reflect the personal taste of the authors, all of them well known and distinguished specialists. A common feature of these articles is to start with a historical introduction and conclude with recent results, g...
The book contains a collection of 21 original research papers which report on recent developments in various fields of nonlinear analysis. The collection covers a large variety of topics ranging from abstract fields such as algebraic topology, functional analysis, operator theory, spectral theory, analysis on manifolds, partial differential equations, boundary value problems, geometry of Banach spaces, measure theory, variational calculus, and integral equations, to more application-oriented fields like control theory, numerical analysis, mathematical physics, mathematical economy, and financial mathematics. The book is addressed to all specialists interested in nonlinear functional analysis and its applications, but also to postgraduate students who want to get in touch with this important field of modern analysis. It is dedicated to Alfonso Vignoli who has essentially contributed to the field, on the occasion of his sixtieth birthday.
This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers.
Topological tools in Nonlinear Analysis had a tremendous develop ment during the last few decades. The three main streams of research in this field, Topological Degree, Singularity Theory and Variational Meth ods, have lately become impetuous rivers of scientific investigation. The process is still going on and the achievements in this area are spectacular. A most promising and rapidly developing field of research is the study of the role that symmetries play in nonlinear problems. Symmetries appear in a quite natural way in many problems in physics and in differential or symplectic geometry, such as closed orbits for autonomous Hamiltonian systems, configurations of symmetric elastic plates...
This volume contains the proceedings of a NATO Advanced Research Workshop on Periodic Solutions of Hamiltonian Systems held in II Ciocco, Italy on October 13-17, 1986. It also contains some papers that were an outgrowth of the meeting. On behalf of the members of the Organizing Committee, who are also the editors of these proceedings, I thank all those whose contributions made this volume possible and the NATO Science Committee for their generous financial support. Special thanks are due to Mrs. Sally Ross who typed all of the papers in her usual outstanding fashion. Paul H. Rabinowitz Madison, Wisconsin April 2, 1987 xi 1 PERIODIC SOLUTIONS OF SINGULAR DYNAMICAL SYSTEMS Antonio Ambrosetti Vittorio Coti Zelati Scuola Normale Superiore SISSA Piazza dei Cavalieri Strada Costiera 11 56100 Pisa, Italy 34014 Trieste, Italy ABSTRACT. The paper contains a discussion on some recent advances in the existence of periodic solutions of some second order dynamical systems with singular potentials. The aim of this paper is to discuss some recent advances in th.e existence of periodic solutions of some second order dynamical systems with singular potentials.
Very Good,No Highlights or Markup,all pages are intact.
The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes...
The Monge-Ampère equation has attracted considerable interest in recent years because of its important role in several areas of applied mathematics. Monge-Ampère type equations have applications in the areas of differential geometry, the calculus of variations, and several optimization problems, such as the Monge-Kantorovitch mass transfer problem. This book stresses the geometric aspects of this beautiful theory, using techniques from harmonic analysis – covering lemmas and set decompositions.
Pierre Grisvard, one of the most distinguished French mathematicians, died on April 22, 1994. A Conference was held in November 1994 out of which grew the invited articles contained in this volume. All of the papers are related to functional analysis applied to partial differential equations, which was Grisvard's specialty. Indeed his knowledge of this area was extremely broad. He began his career as one of the very first students of Jacques Louis Lions, and in 1965, he presented his "State Thesis" on interpolation spaces, using in particular, spectral theory for linear operators in Banach spaces. After 1970, he became a specialist in the study of optimal regularity for par tial differential...