You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Traditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed. Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included. This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.
This proceedings volume gathers selected, revised papers presented at the X International Meeting on Lorentzian Geometry (GeLoCor 2021), virtually held at the University of Córdoba, Spain, on February 1-5, 2021. It includes surveys describing the state-of-the-art in specific areas, and a selection of the most relevant results presented at the conference. Taken together, the papers offer an invaluable introduction to key topics discussed at the conference and an overview of the main techniques in use today. This volume also gathers extended revisions of key studies in this field. Bringing new results and examples, these unique contributions offer new perspectives to the original problems and...
The aim of this book is to provide an overview of some of the progress made by the Spanish Network of Geometric Analysis (REAG, by its Spanish acronym) since its born in 2007. REAG was created with the objective of enabling the interchange of ideas and the knowledge transfer between several Spanish groups having Geometric Analysis as a common research line. This includes nine groups at Universidad Autónoma de Barcelona, Universidad Autónoma de Madrid, Universidad de Granada, Universidad Jaume I de Castellón, Universidad de Murcia, Universidad de Santiago de Compostela and Universidad de Valencia. The success of REAG has been substantiated with regular meetings and the publication of resea...
View the abstract.