You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explores the potential of solid oxide electrolysis cells (SOEC) in the field of hydrogen production. It describes this technology in detail, including fundamentals, state-of-the-art the technology, materials development, current limitations, recent trends and industrial applications. It clarifies SOECs role in decarbonizing the energy sector, drawing on contributions from experts in the field.
High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications provides a comprehensive discussion of solid oxide fuel cells (SOFCs). SOFCs are the most efficient devices for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity, and have been gaining increasing attention for clean and efficient distributed power generation. The book explains the operating principle, cell component materials, cell and stack designs and fabrication processes, cell and stack performance, and applications of SOFCs. Individual chapters are written by internationally renowned authors in their respective fields, and the text is supplemented by a large number of references for further information. The book is primarily intended for use by researchers, engineers, and other technical people working in the field of SOFCs. Even though the technology is advancing at a very rapid pace, the information contained in most of the chapters is fundamental enough for the book to be useful even as a text for SOFC technology at the graduate level.
This book discusses recent advances in intermediate-temperature solid oxide fuel cells (IT-SOFCs), focusing on material development and design, mechanism study, reaction kinetics and practical applications. It consists of five chapters presenting different types of reactions and materials employed in electrolytes, cathodes, anodes, interconnects and sealants for IT-SOFCs. It also includes two chapters highlighting new aspects of these solid oxide fuel cells and exploring their practical applications. This insightful and useful book appeals to a wide readership in various fields, including solid oxide fuel cells, electrochemistry, membranes and ceramics. Zongping Shao is a Professor at the State Key Laboratory of Materials-Oriented Chemical Engineering and the College of Energy, Nanjing University of Technology, China. Moses O. Tade is a Professor at the Department of Chemical Engineering, Curtin University, Australia.
Cyclodextrin Chemistry covers the preparation of cyclodextrins and cyclodextrin derivatives (CDs), and their applications in industrial and non-industrial areas. An overall theme in the book is the screening of cyclodextrin glycosyltransferase (CGTase), the preparation of sugar-branched cyclodextrins and CDs, and the use of CDs for reconstructing various supermolecule systems. The specific content also includes preparation methods, spectroscopy techniques for CDs analysis, and potential applications in food packaging, nutrient fortification, medicine, cosmetics, textiles, chemicals, feed, agriculture, and environment. It summarizes the research merit of CDs in the past twenty years and also ...
Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.
Intermediate Temperature Solid Oxide Fuel Cells: Electrolytes, Electrodes and Interconnects introduces the fundamental principles of intermediate solid oxide fuel cells technology. It provides the reader with a broad understanding and practical knowledge of the electrodes, pyrochlore/perovskite/oxide electrolytes and interconnects which form the backbone of the Solid Oxide Fuel Cell (SOFC) unit. Opening with an introduction to the thermodynamics, physiochemical and electrochemical behavior of Solid Oxide Fuel Cells (SOFC), the book also discusses specific materials, including low temperature brownmillerites and aurivillius electrolytes, as well as pyrochlore interconnects. This book analyzes...
Solid Oxide Fuel Cells: From Fundamental Principles to Complete Systems is a valuable resource for beginners, experienced researchers, and developers of solid oxide fuel cells (SOFCs). It provides a fundamental understanding of SOFCs by covering the present state-of-the-art as well as ongoing research and future challenges to be solved. It discusses current and future materials, and provides an overview of development activities with a more general system approach toward fuel cell plant technology, including plant design and economics, industrial data, and advances in technology. Provides an understanding of the operating principles of SOFCs Discusses state-of-the-art materials, technologies, and processes Includes a review of the current industry and lessons learned Offers a more general system approach toward fuel cell plant technology, including plant design and economics of SOFC manufacture Covers significant technical challenges that remain to be solved Presents the status of government activities, industry, and market This book is aimed at electrochemists, batteries and fuel cell engineers, alternative energy scientists, and professionals in materials science.