You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigenproblems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.
None
This volume arose from the Third Annual Workshop on Inverse Problems, held in Stockholm on May 2-6, 2012. The proceedings present new analytical developments and numerical methods for solutions of inverse and ill-posed problems, which consistently pose complex challenges to the development of effective numerical methods. The book highlights recent research focusing on reliable numerical techniques for the solution of inverse problems, with relevance to a range of fields including acoustics, electromagnetics, optics, medical imaging, and geophysics.
This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.