You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. the book assumes that readers are familiar with the content covered in a typical undergraduate-level introductory statistics course. Readers will also, ideally, have some experience with undergraduate-level probability, calculus, and the R statistical software. Readers without this background will still be able to follow alo...
Designed for a one-semester advanced undergraduate or graduate statistical theory course, Statistical Theory: A Concise Introduction, Second Edition clearly explains the underlying ideas, mathematics, and principles of major statistical concepts, including parameter estimation, confidence intervals, hypothesis testing, asymptotic analysis, Bayesian inference, linear models, nonparametric statistics, and elements of decision theory. It introduces these topics on a clear intuitive level using illustrative examples in addition to the formal definitions, theorems, and proofs. Based on the authors’ lecture notes, the book is self-contained, which maintains a proper balance between the clarity a...
Introduction to Design and Analysis of Scientific Studies exposes undergraduate and graduate students to the foundations of classical experimental design and observational studies through a modern framework - The Rubin Causal Model. A causal inference framework is important in design, data collection and analysis since it provides a framework for investigators to readily evaluate study limitations and draw appropriate conclusions. R is used to implement designs and analyse the data collected. Features: Classical experimental design with an emphasis on computation using tidyverse packages in R. Applications of experimental design to clinical trials, A/B testing, and other modern examples. Discussion of the link between classical experimental design and causal inference. The role of randomization in experimental design and sampling in the big data era. Exercises with solutions. Instructor slides in RMarkdown, a new R package will be developed to be used with book, and a bookdown version of the book will be freely available. The proposed book will emphasize ethics, communication and decision making as part of design, data analysis, and statistical thinking.
This book introduces best practices in longitudinal data analysis at intermediate level, with a minimum number of formulas without sacrificing depths. It meets the need to understand statistical concepts of longitudinal data analysis by visualizing important techniques instead of using abstract mathematical formulas. Different solutions such as multiple imputation are explained conceptually and consequences of missing observations are clarified using visualization techniques. Key features include the following: Provides datasets and examples online Gives state-of-the-art methods of dealing with missing observations in a non-technical way with a special focus on sensitivity analysis Conceptualises the analysis of comparative (experimental and observational) studies It is the ideal companion for researchers and students in epidemiological, health, and social and behavioral sciences working with longitudinal studies without a mathematical background.
This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone wit...
Hugely popular textbook on survival analysis for graduate students of statistics and biostatistics, mainly due to its accessibility and breadth of examples. This is a standard course on graduate programs in biostatistics and statistics, and this is one of the most popular textbooks. Updated with modern methods covering Bayesian survival analysis, joint models, and more.
Developed from the authors’ graduate-level biostatistics course, Applied Categorical and Count Data Analysis, Second Edition explains how to perform the statistical analysis of discrete data, including categorical and count outcomes. The authors have been teaching categorical data analysis courses at the University of Rochester and Tulane University for more than a decade. This book embodies their decade-long experience and insight in teaching and applying statistical models for categorical and count data. The authors describe the basic ideas underlying each concept, model, and approach to give readers a good grasp of the fundamentals of the methodology without relying on rigorous mathemat...
Fundamentals of Mathematical Statistics is meant for a standard one-semester advanced undergraduate or graduate-level course in Mathematical Statistics. It covers all the key topics—statistical models, linear normal models, exponential families, estimation, asymptotics of maximum likelihood, significance testing, and models for tables of counts. It assumes a good background in mathematical analysis, linear algebra, and probability but includes an appendix with basic results from these areas. Throughout the text, there are numerous examples and graduated exercises that illustrate the topics covered, rendering the book suitable for teaching or self-study. Features A concise yet rigorous introduction to a one-semester course in Mathematical Statistics Covers all the key topics Assumes a solid background in Mathematics and Probability Numerous examples illustrate the topics Many exercises enhance understanding of the material and enable course use This textbook will be a perfect fit for an advanced course in Mathematical Statistics or Statistical Theory. The concise and lucid approach means it could also serve as a good alternative, or supplement, to existing texts.
This edited collection brings together voices of the strongest thought leaders on diversity, equity and inclusion in the field of statistics and data science, with the goal of encouraging and steering the profession into the regular practice of inclusive and humanistic leadership. It provides futuristic ideas for promoting opportunities for equitable leadership, as well as tested approaches that have already been found to make a difference. It speaks to the challenges and opportunities of leading successful research collaborations and making strong connections within research teams. Curated with a vision that leadership takes a myriad of forms, and that diversity has many dimensions, this vo...
Multi-state models provide a statistical framework for studying longitudinal data on subjects when focus is on the occurrence of events that the subjects may experience over time. They find application particularly in biostatistics, medicine, and public health. The book includes mathematical detail which can be skipped by readers more interested in the practical examples. It is aimed at biostatisticians and at readers with an interest in the topic having a more applied background, such as epidemiology. This book builds on several courses the authors have taught on the subject. Key Features: · Intensity-based and marginal models. · Survival data, competing risks, illness-death models, recurrent events. · Includes a full chapter on pseudo-values. · Intuitive introductions and mathematical details. · Practical examples of event history data. · Exercises. Software code in R and SAS and the data used in the book can be found on the book’s webpage.