You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irr...
This volume presents the invited lectures of the workshop "Infinite Dimensional Algebras and Quantum Integrable Systems" held in July 2003 at the University of Algarve, Faro, Portugal, as a satellite workshop of the XIV International Congress on Mathematical Physics. In it, recent developments in the theory of infinite dimensional algebras, and their applications to quantum integrable systems, are reviewed by leading experts in the field.
As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures. The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive Forms and Related Topics" and the RIMS Symposium bearing the same title, both held in Kyoto. The papers reflect the broad research of some of the world's leading mathematical physicists, and should serve as an excellent resource for researchers as well as graduate students of both disciplines.
The book is based on courses taught by the author at Moscow State University. Compared to many other books on the subject, it is unique in that the exposition is based on extensive use of the language and elementary constructions of category theory. Among topics featured in the book are the theory of Banach and Hilbert tensor products, the theory of distributions and weak topologies, and Borel operator calculus. The book contains many examples illustrating the general theory presented, as well as multiple exercises that help the reader to learn the subject. It can be used as a textbook on selected topics of functional analysis and operator theory. Prerequisites include linear algebra, elements of real analysis, and elements of the theory of metric spaces.
The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. These workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. At the beginning, the top universities in California and Utah hosted the meetings which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklah...
This is the second volume of the book on the proof of Fermat's Last Theorem by Wiles and Taylor (the first volume is published in the same series; see MMONO/243). Here the detail of the proof announced in the first volume is fully exposed. The book also includes basic materials and constructions in number theory and arithmetic geometry that are used in the proof. In the first volume the modularity lifting theorem on Galois representations has been reduced to properties of the deformation rings and the Hecke modules. The Hecke modules and the Selmer groups used to study deformation rings are constructed, and the required properties are established to complete the proof. The reader can learn basics on the integral models of modular curves and their reductions modulo that lay the foundation of the construction of the Galois representations associated with modular forms. More background materials, including Galois cohomology, curves over integer rings, the Néron models of their Jacobians, etc., are also explained in the text and in the appendices.
During his long and productive career, Salomon Bochner worked in a variety of different areas of mathematics. This four part set brings together his collected papers, illustrating the range and depth of his mathematical interests. The books are available either individually or as a set.
This book is devoted to the symmetry of Painleve equations (especially those of types II and IV). The author studies families of transformations for several types of Painleve equationsQthe so-called Backlund transformationsQwhich transform solutions of a given Painleve equation to solutions of the same equation with a different set of parameters. It turns out that these symmetries can be interpreted in terms of root systems associated to affine Weyl groups. The author describes the remarkable combinatorial structures of these symmetries and shows how they are related to the theory of $\tau$-functions associated to integrable systems.
This book is intended to provide engineering and/or statistics students, communications engineers, and mathematicians with the firm theoretic basis of source coding (or data compression) in information theory. Although information theory consists of two main areas, source coding and channel coding, the authors choose here to focus only on source coding. The reason is that, in a sense, it is more basic than channel coding, and also because of recent achievements in source coding and compression. An important feature of the book is that whenever possible, the authors describe universal coding methods, i.e., the methods that can be used without prior knowledge of the statistical properties of t...
Algorithmic number theory is a rapidly developing branch of number theory, which, in addition to its mathematical importance, has substantial applications in computer science and cryptography. Among the algorithms used in cryptography, the following are especially important: algorithms for primality testing; factorization algorithms for integers and for polynomials in one variable; applications of the theory of elliptic curves; algorithms for computation of discrete logarithms; algorithms for solving linear equations over finite fields; and, algorithms for performing arithmetic operations on large integers. The book describes the current state of these and some other algorithms. It also contains extensive bibliography. For this English translation, additional references were prepared and commented on by the author.