You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book develops a theory that can be viewed as a noncommutative counterpart of the following topics: dynamical systems in general and integrable systems in particular; Hamiltonian formalism; variational calculus, both in continuous space and discrete. The text is self-contained and includes a large number of exercises. Many different specific models are analysed extensively and motivations for the new notions are provided.
This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This is the third of three volumes on hydrogen peroxide and cell signaling, and includes chapters on such topics as the biological chemistry of hydrogen peroxide, reactive oxygen species in the activation of MAP kinases, and investigating the role of reactive oxygen species in regulating autophagy. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers hydrogen peroxide and cell signaling - Contains chapters on such topics as the biological chemistry of hydrogen peroxide, reactive oxygen species in the activation of MAP kinases, and investigating the role of reactive oxygen species in regulating autophagy
Leading scientists summarize the latest findings on signal transduction and cell cycle regulation and describe the effort to design and synthesize inhibiting molecules, as well as to evaluate their biochemical and biological activities. They review the relevant cell surface receptors, their ligands, and their downstream pathways. Also examined are the latest findings on the components of novel signaling networks controlling the activity of nuclear transcription factors and cell cycle regulatory molecules. Cutting-edge and highly suggestive, Signaling Networks and Cell Cycle Control: The Molecular Basis of Cancer and Other Diseases presents a wealth of information on the emerging principles of the field, as well as an invaluable guide for all experimental and clinical investigators of cell regulation and its rapidly emerging pharmacological opportunities today.
Dual specificity phosphatases (DUSPs) constitute a heterogeneous group of protein tyrosine phosphatases with the ability to dephosphorylate Ser/Thr and Tyr residues from proteins, as well as from other non-proteinaceous substrates including signaling lipids. DUSPs include, among others, MAP kinase (MAPK) phosphatases (MKPs) and small-size atypical DUSPs. MKPs are enzymes specialized in regulating the activity and subcellular location of MAPKs, whereas the function of small-size atypical DUSPs seems to be more diverse. DUSPs have emerged as key players in the regulation of cell growth, differentiation, stress response, and apoptosis. DUSPs regulate essential physiological processes, including...
Analysing the Screenplay highlights the screenplay as an important form in itself, as opposed to merely being the first stage of the production process.
With more than 30 different types and subtypes known and many more yet to be classified and characterized, muscular dystrophy is a highly heterogeneous group of inherited neuromuscular disorders. This book provides a comprehensive overview of the various types of muscular dystrophies, genes associated with each subtype, disease diagnosis, management as well as available treatment options. Though each different type and subtype of muscular dystrophy is associated with a different causative gene, the majority of them have overlapping clinical presentations, making molecular diagnosis inevitable for both disease diagnosis as well as patient management. This book discusses the currently available diagnostic approaches that have revolutionized clinical research. Pathophysiology of the different muscular dystrophies, multifaceted functions of the involved genes as well as efforts towards diagnosis and effective patient management, are also discussed. Adding value to the book are the included reports on ongoing studies that show a promise for future therapeutic strategies.
This book aims to bridge the gap in understanding how protein-tyrosine phosphatases (PTPs), which carry out the reverse reaction of tyrosine phosphorylation, feature in cancer cell biology. The expertly authored chapters will first review the general features of the PTP superfamily, including their overall structure and enzymological properties; use selected examples of individual PTP superfamily members, to illustrate emerging data on the role of PTPs in cancer; and will review the current status of PTP-based drug development efforts. Protein Tyrosine Phosphatases in Cancer,from renowned researchers Benjamin Neel and Nicholas Tonks, is invaluable reading for researchers in oncology, stem cell signaling,and biochemistry.
There has always been some tension between proponents of hypothesis-driven and discovery-driven research in the broad field of life sciences. Academic research has been primarily focused on hypothesis-driven research. However, the success of the human genome project, a discovery-driven research approach, has opened the door to adding other types of discovery-driven research to a continuum of research approaches. In contrast, drug discovery research in the pharmaceutical industry has embraced discovery-driven research for many years. A good example has been the discovery of active compounds from large chemical libraries, through screening campaigns. The success of the human genome project has...
Although phosphorylation of proteins on tyrosine is relatively rare compared to phosphorylation on serine or threonine residues, the past two decades of research into PTP function have led to a great appreciation of the critical role PTPs have in regulating basic cellular processes. Among these important roles is the regulation of cellular signaling pathways related to metabolism. This volume contains chapters which highlight many aspects of PTP function in the context of metabolism. Given the growing obesity and diabetes epidemics in the United States and throughout the world, the desire to identify possible therapeutic targets for treatment of these diseases is a high priority. In many ways, PTPs may be attractive drug targets since they are amenable to targeting with small molecules; however many challenges abound in making PTP inhibitors.