You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 12th International Workshop on OpenMP, IWOMP 2016, held in Nara, Japan, in October 2016. The 24 full papers presented in this volume were carefully reviewed and selected from 28 submissions. They were organized in topical sections named: applications, locality, task parallelism, extensions, tools, accelerator programming, and performance evaluations and optimization.
Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened up this possibility for parallel EAs, and this is the first book dedicated to this exciting developme...
It constitutes the refereed proceedings of the 4th Asian Supercomputing Conference, SCFA 2018, held in Singapore in March 2018. Supercomputing Frontiers will be rebranded as Supercomputing Frontiers Asia (SCFA), which serves as the technical programme for SCA18. The technical programme for SCA18 consists of four tracks: Application, Algorithms & Libraries Programming System Software Architecture, Network/Communications & Management Data, Storage & Visualisation The 20 papers presented in this volume were carefully reviewed nd selected from 60 submissions.
This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Conference on Learning and Intelligent Optimization, LION 5, held in Rome, Italy, in January 2011. The 32 revised regular and 3 revised short papers were carefully reviewed and selected from a total of 99 submissions. In addition to the contributions to the general track there are 11 full papers and 3 short papers presented at the following four special sessions; IMON: Intelligent Multiobjective OptimizatioN, LION-PP: Performance Prediction Self* EAs: Self-tuning, self-configuring and self-generating evolutionary algorithms LION-SWAP: Software and Applications.
This book constitutes revised selected papers from the workshops held at the 27th International Conference on Parallel and Distributed Computing, Euro-Par 2021, which took place in Portugal, in August 2021. The workshops were held virtually due to the coronavirus pandemic. The 39 full papers presented in this volume were carefully reviewed and selected from numerous submissions. The papers cover all aspects of parallel and distributed processing. These range from theory to practice, from small to the largest parallel and distributed systems and infrastructures, from fundamental computational problems to full-edged applications, from architecture, compiler, language and interface design and implementation to tools, support infrastructures, and application performance aspects.
Covering research topics from system software such as programming languages, compilers, runtime systems, operating systems, communication middleware, and large-scale file systems, as well as application development support software and big-data processing software, this book presents cutting-edge software technologies for extreme scale computing. The findings presented here will provide researchers in these fields with important insights for the further development of exascale computing technologies. This book grew out of the post-peta CREST research project funded by the Japan Science and Technology Agency, the goal of which was to establish software technologies for exploring extreme performance computing beyond petascale computing. The respective were contributed by 14 research teams involved in the project. In addition to advanced technologies for large-scale numerical computation, the project addressed the technologies required for big data and graph processing, the complexity of memory hierarchy, and the power problem. Mapping the direction of future high-performance computing was also a central priority.
Unmatched: 50 Years of Supercomputing: A Personal Journey Accompanying the Evolution of a Powerful Tool The rapid and extraordinary progress of supercomputing over the past half-century is a powerful demonstration of our relentless drive to understand and shape the world around us. In this book, David Barkai offers a unique and compelling account of this remarkable technological journey, drawing from his own rich experiences working at the forefront of high-performance computing (HPC). This book is a journey delineated as five decade-long ‘epochs’ defined by the systems’ architectural themes: vector processors, multi-processors, microprocessors, clusters, and accelerators and cloud com...
This book constitutes the refereed proceedings of the 19th International Conference on Parallel and Distributed Computing, Euro-Par 2013, held in Aachen, Germany, in August 2013. The 70 revised full papers presented were carefully reviewed and selected from 261 submissions. The papers are organized in 16 topical sections: support tools and environments; performance prediction and evaluation; scheduling and load balancing; high-performance architectures and compilers; parallel and distributed data management; grid, cluster and cloud computing; peer-to-peer computing; distributed systems and algorithms; parallel and distributed programming; parallel numerical algorithms; multicore and manycore programming; theory and algorithms for parallel computation; high performance networks and communication; high performance and scientific applications; GPU and accelerator computing; and extreme-scale computing.
This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.