You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Melt Electrospinning: A Green Method to Produce Superfine Fibers introduces the latest results from a leading research group in this area, exploring the structure, equipment polymer properties and spinning conditions of melt electrospinning. Sections introduce the invention of melt electrospinning, including the independent development of centrifugal melt electrospinning and upward melt electrospinning, discuss electro magnetization of melt and the testing method of fiber performance by means of different polymers and self-designed devices, cover simulation, and introduce principle methods and improvement measures of centrifugal melt electrospinning. - Presents melt electrospinning, a green nanofiber fabrication technology - Introduces the invention of melt electrospinning, including centrifugal melt electrospinning and upward melt electrospinning - Describes optimization techniques, electro magnetization of melt, testing methods, DPD simulation and improvement methods - Provides a useful introduction to contemporary electrospinning research with a view to its many potential applications
Electrospinning is a fiber production method which uses electric force to draw charged threads of polymer solutions or polymer melts up to fiber diameters in the order of some hundred nanometers. It is a nanofiber fabrication technology and a key research area. Electrospinning is a more convenient and efficient method of preparing nanofibers than stretching, phase separation, or similar methods. Melt Electrospinning introduces the latest results from a leading research group in this area, exploring the structure, equipment polymer properties and spinning conditions of melt electrospinning. The book describes the principles and progress of electrospinning. The book is divided in to four parts...
Photocatalysis is a reaction which is accelerated by light while a heterogeneous reaction consists of two phases ( a solid and a liquid for example). Heterogeneous Photocatalysis is a fast developing science which to date has not been fully detailed in a monograph. This title discusses the basic principles of heterogeneous photocatalysis and describes the bulk and surface properties of semiconductors. Applications of various types of photoreactions are described and the problems related to the modeling and design of photoreactors are covered.
Cardiac Tissue Engineering: Methods and Protocols presents a collection of protocols on cardiac tissue engineering from pioneering and leading researchers around the globe. These include methods and protocols for cell preparation, biomaterial preparation, cell seeding, and cultivation in various systems. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cardiac Tissue Engineering: Methods and Protocols highlights the major techniques, both experimental and computational, for the study of cardiovascular tissue engineering.
The book provides an up-to-date account of the various techniques of fabrication & functionalization of electrospun nanofibers as well as recent advancements. An overview of the advanced applications of such techniques in different areas is also presented. Both experimental and theoretical approaches related to electrospun nanofibers are covered along with a discussion on the inherent properties of electrospun nanofibers. Therefore, this book provides a unique resource not only to established researchers but also newcomers starting out in this field.
An acid that is stronger than the acid strength of 100% sulphuric acid is known as a superacid. Environmental concerns about the use of toxic liquid superacids and liquid inorganic acids in the transformation of hydrocarbons provide an impetus for a search of stable and more environmentally friendly solid acid catalysts. This book examines an important opportunity related to green chemistry where solid superacids lead to new gas- and liquid-solid phase reactions, which are environmentally benign processes in the chemical industry.
Design, Deployment and Operation of a Hydrogen Supply Chain introduces current energy system and the challenges that may hinder the large-scale adoption of hydrogen as an energy carrier. It covers the different aspects of a methodological framework for designing a HSC, including production, storage, transportation and infrastructure. Each technology's advantages and drawbacks are evaluated, including their technology readiness level (TRL). The multiple applications of hydrogen for energy are presented, including use in fuel cells, combustion engines, as an alternative to natural gas and power to gas. Through analysis and forecasting, the authors explore deployment scenarios, considering the ...
A comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices Polymer Electrolytes is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The authors ? noted experts on the topic ? discuss the various characterization methods, including impedance spectroscopy and thermal characterization. The authors also provide information on the myriad applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. Over the past three decades, researchers have been developing new polymer electrolytes...
Electrospun and Nanofibrous Membranes: Principles and Applications covers the fundamental basic science and many engineering aspects of electrospun membrane technology and nanofibers, membrane design and membrane processes. The book comprehensively reviews a wide range of applications including pressure-driven processes, MD process, batteries, oil-water separation, air filtration, drug delivery, fuel-cells, and ion-exchange membranes, as well as antimicrobial membranes. Electrospun and Nanofibrous Membranes will be useful for a range of audiences: chemical, polymer, and materials engineers; professors and graduate students working on membrane-based separation technology and electrospun nanofibers; as well as R&D engineers in industry working with applications including water and wastewater treatment, desalination, drug delivery and tissue engineering, new generation of batteries, fuel cells, and air filtration. - Introduces the principles of electrospinning and electrospun membranes - Reviews and evaluates the different configurations of electrospinning - Discusses scale-up strategies for nanofiber production
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Rechargeable Lithium and Lithium Ion Batteries¿, held during the 212th meeting of The Electrochemical Society, in Washington, DC, from October 7 to 12, 2007.