You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Strategy is the main source of long-term growth for organizations, and if it is not successfully implemented, even if appropriate ones are adopted, the process is futile. The balanced scorecard which focuses on four aspects such as growth and learning, internal processes, customer, and financial is considered as a comprehensive framework for assessing performance and the progress of the strategy. Moreover, the data envelopment analysis is one of the best mathematical methods to compute the efficiency of organizations. The combination of these two techniques is a significant quantitative measurement with respect to the organization’s performance. However, in the real world, determinate and indeterminate information exists. Henceforth, the indeterminate issues are inescapable and must be considered in the performance evaluation. Neutrosophic number is a helpful tool for dealing with information that is indeterminate and incomplete.
The aim of this paper is to propose the generalized version of the multipolar neutrosophic soft set with operations and basic properties. Here, we define the AND, OR, Truth-Favorite, and False-Favorite operators along with their properties. Also, we define the necessity and possibility of operations for them. Later on, to extend it to solve the decision-making problems, we define some information measures such as distance, similarity, and correlation coefficient for the generalized multipolar neutrosophic soft set. Several desirable properties and their relationship between them are derived. Finally, based on these information measures, a decision-making algorithm is stated under the neutrosophic environment to tackle the uncertain and vague information.
An efficient air transport system is critical to countries attaining and sustaining healthy economies in an increasingly interconnected world economy. This volume 5 of Advances in Airline Economics includes literature surveys and original empirical research examining airline efficiency in the twenty first century.
In this study, we give some concepts concerning the neutrosophic sets, single valued neutrosophic sets, interval-valued neutrosophic sets, bipolar neutrosophic sets, neutrosophic hesitant fuzzy sets, inter-valued neutrosophic hesitant fuzzy sets, refined neutrosophic sets, bipolar neutrosophic refined sets, multi-valued neutrosophic sets, simplified neutrosophic linguistic sets, neutrosophic over/off/under sets, rough neutrosophic sets, rough bipolar neutrosophic sets, rough neutrosophic hyper-complex set, and their basic operations.
None
Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or sample size might not be exactly determinate because of some individuals that partially belong to the population or sample, and partially they do not belong, or individuals whose appurtenance is completely unknown. Also, there are population or sample individuals whose data could be indeterminate. In this book, we develop the 1995 notion of neutrosophic statistics. We present various practical examples. It is possible to define the neutrosophic statistics in many ways, because there are various types of indeterminacies, depending on the problem to solve.
In this paper, we introduce the concept of neutrosophic number from different viewpoints. We define different types of linear and non-linear generalized triangular neutrosophic numbers which are very important for uncertainty theory. We introduced the de-neutrosophication concept for neutrosophic number for triangular neutrosophic numbers. This concept helps us to convert a neutrosophic number into a crisp number. The concepts are followed by two application, namely in imprecise project evaluation review technique and route selection problem.
This book introduces readers to the novel concept of spherical fuzzy sets, showing how these sets can be applied in practice to solve various decision-making problems. It also demonstrates that these sets provide a larger preference volume in 3D space for decision-makers. Written by authoritative researchers, the various chapters cover a large amount of theoretical and practical information, allowing readers to gain an extensive understanding of both the fundamentals and applications of spherical fuzzy sets in intelligent decision-making and mathematical programming.
Neutrosophy means the study of ideas and notions that are not true, nor false, but in between (i.e. neutral, indeterminate, unclear, vague, ambiguous, incomplete, contradictory, etc.). Each field has a neutrosophic part, i.e. that part that has indeterminacy. Thus, there were born the neutrosophic logic, neutrosophic set, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus, etc. There exist many types of indeterminacies – that is why neutrosophy can be developed in many different ways.
As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. And interval neutrosophic sets (INSs) have been proposed exactly to address issues with a set of numbers in the real unit interval, not just a specific number.However, there are fewer reliable operations for INSs, as well as the INS aggregation operators and decisionmakingmethod. For this purpose, the operations for INSs are defined and a comparison approach is put forward based on the related research of interval valued intuitionistic fuzzy sets (IVIFSs) in this paper. On the basis of the operations and comparison approach, two interval neutrosophic number aggregation operators are developed. Then, amethod formulticriteria decisionmaking problems is explored applying the aggregation operators. In addition, an example is provided to illustrate the application of the proposed method.