You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Atomic and molecular spectroscopy has provided basic information leading to the development of quantum mechanics and to the understanding of the building blocks of matter. It continues to provide further insight into the statics and dynamics of the microcosmos, and provides the ·means for test ing new concepts and computational methods. The results of atomic and molecular spectroscopy are of great importance in astrophysics, plasma and laser physics. The rapidly growing field of spectroscopic applications has made considerable impact on many disciplines, including medicine, envi ronmental protection, chemical processing and energy research. In particu lar, the techniques of electron and las...
This Comprehensive Text Clearly Explains Quantum Theory, Wave Mechanics, Structure Of Atoms And Molecules And Spectroscopy.The Book Is In Three Parts, Namely, Wave Mechanics; Structure Of Atoms And Molecules; And Spectroscopy And Resonance Techniques.In A Simple And Systematic Manner, The Book Explains The Quantum Mechanical Approach To Structure, Along With The Basic Principles And Application Of Spectroscopic Methods For Molecular Structure Determination.The Book Also Incorporates The Electric And Magnetic Properties Of Matter, The Symmetry, Group Theory And Its Applications.Each Chapter Includes Many Solved Examples And Problems For A Better Understanding Of The Subject.With Its Exhaustive Coverage And Systematic Approach, This Is An Invaluable Text For B.Sc. (Hons.) And M.Sc. Chemistry Students.
Molecular Spectroscopy: Modern Research explores the advances in several phases of research in molecular spectroscopy. This eight-chapter book commemorates the 25th anniversary of the annual Columbus Symposium on Molecular Structure and Spectroscopy, held in September, 1970. This book highlights the spectroscopic studies of molecular species in the gas phase and in matrices. Representative articles are also included that cover the applications of molecular studies in a wide variety of areas such as biophysics, astrophysical problems, and energy transfer processes. Other chapters describe the progress achieved in the technology of high resolution spectroscopy and the techniques and terminology of Lamb-dip spectroscopy. A comprehensive bibliography is included for most of the subjects discussed and this text concludes with tables of standard data listing secondary wavelength standards, fundamental constants, atomic masses, and conversion factors of interest to spectroscopists. Spectroscopists, chemists, and researchers will find this work invaluable.
This book describes the use of modern computational methods in predicting high resolution molecular spectra, which allows the experimental spectroscopist to interpret and assign real spectra. * Offers a comprehensive treatment of modern computation techniques. * Provides a collection of material from different areas of theoretical chemistry and physics. * Bridges the gap between traditional quantum chemistry and experimental molecular spectroscopy.
This unified treatment introduces upper-level undergraduates and graduate students to the concepts and methods of modern molecular spectroscopy and their applications to quantum electronics, lasers, and related optical phenomena. Starting with a review of the prerequisite quantum mechanical background, the text examines atomic spectra and diatomic molecules, including the rotation and vibration of diatomic molecules and their electronic spectra. A discussion of rudimentary group theory advances to considerations of the rotational spectra of polyatomic molecules and their vibrational and electronic spectra; molecular beams, masers, and lasers; and a variety of forms of spectroscopy, including optical resonance spectroscopy, coherent transient spectroscopy, multiple-photon spectroscopy, and spectroscopy beyond molecular constants. The text concludes with a series of useful appendixes.
Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.
The latest in the 'Tutorial Chemistry Texts' series, 'Basic Atomic and Molecular Spectroscopy' contains chapters on quantization in polyelectronic atoms, molecular vibrations and electronic spectroscopy.
A non-mathematical introduction to molecular spectroscopy. This revision includes: a chapter on the spectroscopy of surfaces and solids, new diagrams and problems, spectra that has been re-recorded on modern instruments, and enhanced applications of Fourier transform principles.