You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fleshy Fruits are a late acquisition of plant evolution. In addition of protecting the seeds, these specialized organs unique to plants were developed to promote seed dispersal via the contribution of frugivorous animals. Fruit development and ripening is a complex process and understanding the underlying genetic and molecular program is a very active field of research. Part of the ripening process is directed to build up quality traits such as color, texture and aroma that make the fruit attractive and palatable. As fruit consumers, humans have developed a time long interaction with fruits which contributed to make the fruit ripening attributes conform our needs and preferences. This issue ...
This book describes the strategy used for sequencing, assembling and annotating the tomato genome and presents the main characteristics of this sequence with a special focus on repeated sequences and the ancestral polyploidy events. It also includes the chloroplast and mitochondrial genomes. Tomato (Solanum lycopersicum) is a major crop plant as well as a model for fruit development, and the availability of the genome sequence has completely changed the paradigm of the species’ genetics and genomics. The book describes the numerous genetic and genomic resources available, the identified genes and quantitative trait locus (QTL) identified, as well as the strong synteny across Solanaceae species. Lastly, it discusses the consequences of the availability of a high-quality genome sequence of the cultivated species for the research community. It is a valuable resource for students and researchers interested in the genetics and genomics of tomato and Solanaceae.
Fruit ripening is an important aspect of fruit production. The timing of it affects supply chains and buying behaviour, and for consumers ripeness not only affects perceptions of health but has nutritional effects too. Ripeness is closely related to spoilage which has a major financial impact on agricultural industries. Currently there are fast moving developments in knowledge of the factors affecting fruit ripeness, and this up-to-date monograph seeks to draw together the disparate research in this area. The aim of the book is to produce a comprehensive account covering almost every area related to fruit ripening including the latest molecular mechanisms regulating fruit ripening, its impact on human nutrition and emerging research and technologies.
Grasses are diverse, spanning native prairies to high-yielding grain cropping systems. They are valued for their beauty and useful for soil stabilization, pollution mitigation, biofuel production, nutritional value, and forage quality; grasses encompass the most important grain crops in the world. There are thousands of distinct grass species and many have promiscuous hybridization patterns, blurring species boundaries. Resources for advancing the science and knowledgebase of individual grass species or their unique characteristics varies, often proportional to their perceived value to society. For many grasses, limited genetic information hinders research progress. Presented in this research topic is a brief snapshot of creative efforts to apply modern genomics research methodologies to the study of several minor grass species.
The plant hormone ethylene is one of the most important, being one of the first chemicals to be determined as a naturally-occurring growth regulator and influencer of plant development. It was also the first hormone for which significant evidence was found for the presence of receptors. This important new volume in Annual Plant Reviews is broadly divided into three parts. The first part covers the biosynthesis of ethylene and includes chapters on S-adenosylmethionine and the formation and fate of ACC in plant cells. The second part of the volume covers ethylene signaling, including the perception of ethylene by plant cells, CTR proteins, MAP kinases and EIN2 / EIN3. The final part covers the...
While ecology as a whole continues to receive considerable attention, postharvest food handling, until recently, had not been examined from a green perspective. This has changed as health-conscious consumers look to improve both their diets and their environment. Environmentally Friendly Technologies for Agricultural Produce Quality is the first bo
Focusing exclusively on postharvest vegetable studies, this book covers advances in biochemistry, plant physiology, and molecular physiology to maximize vegetable quality. The book reviews the principles of harvest and storage; factors affecting postharvest physiology, calcium nutrition and irrigation control; product quality changes during handling and storage; technologies to improve quality; spoilage factors and biocontrol methods; and storage characteristics of produce by category. It covers changes in sensory quality such as color, texture, and flavor after harvest and how biotechnology is being used to improve postharvest quality.
Deeply rooted in indigenous peoples’ culture and traditions, millets (also called ‘nutricereals’ are ancestral crops high in nutritional value. As the global agrifood systems face challenges to feed an ever-growing global population, resilient cereals like millets provide an affordable and nutritious option and help guarantee food security. This book presents the basic principles and practices of millets and other potential crops towards climate resilience and nutritional security. It discuses the role of millets in sustainable agriculture, the medicinal use of foxtail millet, exotic fruits in India, and climate-resilient fruit and vegetable crops. The goal of this work is to promote the sustainable cultivation of millets, also under adverse and changing climatic conditions and improving their quality, highlighting their potential to provide new sustainable market opportunities for producers and consumers. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan)