You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective de...
This is a graduate-level introduction to quantitative concepts and methods in the science of living systems. It relies on a systems approach for understanding the physical principles operating in biology. Physical phenomena are treated at the appropriate spatio-temporal scale and phenomenological equations are used in order to reflect the system of interest. Biological details enter to the degree necessary for understanding specific processes, but in many cases the approach is not reductionist. This is in line with the approach taken by physics to many other complex systems. The book bridges the gap between graduate students’ general physics courses and research papers published in profess...
This bold and compelling revisionist history tells the remarkable story of the forgotten lives and labours of Shakespeare's women editors.
In this undergraduate textbook, now in its 2nd edition, the author develops the quantum theory from first principles based on very simple experiments: a photon traveling through beam splitters to detectors, an electron moving through magnetic fields, and an atom emitting radiation. From the physical description of these experiments follows a natural mathematical description in terms of matrices and complex numbers. The first part of the book examines how experimental facts force us to let go of some deeply held preconceptions and develops this idea into a description of states, probabilities, observables, and time evolution. The quantum mechanical principles are illustrated using application...
This volume explores, explains, and supports the case for an advanced exotic beam facility from a theoretical perspective. The US nuclear physics community and the US Department of Energy are committed to building such a facility. The topics covered constitute a survey of present activities in nuclear theory that will set the challenges for an advanced exotic-beam facility and provide the starting point for interpreting experiments that will be conducted there. The research programs described are all at the forefront of nuclear theory, and they include research on the detailed structures of the lightest nuclei, systematic descriptions of all observed nuclei, nuclear tests of fundamental symmetries of nature, the explosion mechanisms of supernovae, and astrophysical synthesis of the heavy elements, as well as several other topics.
Based on four years of fieldwork, Joyriding in Riyadh explores the history and social fabric of Riyadh, and of Saudi Arabia, through youth culture, specifically joyriding.
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.
This book covers the basic theory of electrical circuits, describes analog and digital instrumentation, and applies modern methods to evaluate uncertainties in electrical measurements. It is comprehensive in scope and is designed specifically to meet the needs of students in physics and electrical engineering who are attending laboratory classes in electrical measurements. The topics addressed in individual chapters include the analysis of continuous current circuits; sources of measurement uncertainty and their combined effect; direct current measurements; analysis of alternating current circuits; special circuits including resonant circuits, frequency filters and impedance matching networks; alternating current measurements; analog and digital oscilloscopes; non-sinusoidal waveforms and circuit excitation by pulses; distributed parameter components and transmission lines. Each chapter is equipped with a number of problems. A special appendix describes a series of nine experiments, in each case providing a plan of action for students and guidance for tutors to assist in the preparation and illustration of the experiment.
This textbook develops Special Relativity in a systematic way and offers problems with detailed solutions to empower students to gain a real understanding of this core subject in physics. This new edition has been thoroughly updated and has new sections on relativistic fluids, relativistic kinematics and on four-acceleration. The problems and solution section has been significantly expanded and short history sections have been included throughout the book. The approach is structural in the sense that it develops Special Relativity in Minkowski space following the parallel steps as the development of Newtonian Physics in Euclidian space. A second characteristic of the book is that it discusses the mathematics of the theory independently of the physical principles, so that the reader will appreciate their role in the development of the physical theory. The book is intended to be used both as a textbook for an advanced undergraduate teaching course in Special Relativity but also as a reference book for the future.
This book is a very comprehensive textbook covering in great depth all the electricity and magnetism. The 2nd edition includes new and revised figures and exercises in many of the chapters, and the number of problems and exercises for the student is increased. In the 1st edition, emphasis much was made of superconductivity, and this methodology will be continued in the new edition by strengthening of the E-B analogy. Many of the new exercises and problems are associated with the E-B analogy, which enables those teaching from the book to select suitable teaching methods depending on the student’s ability and courses taken, whether physics, astrophysics, or engineering. Changes in the chapte...