You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Adaptable to courses for non-engineering majors, this textbook illustrates the meaning of a curve through graphs and tests predictions through numerical values of change, before formally defining the limit of a sequence and function, the derivative, and the integral. The second half of the book develops techniques for integrating functions, approxi
The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program,...
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.
The effectiveness of proportional-integral-derivative (PID) controllers for a large class of process systems has ensured their continued and widespread use in industry. Similarly there has been a continued interest from academia in devising new ways of approaching the PID tuning problem. To the industrial engineer and many control academics this work has previously appeared fragmented; but a key determinant of this literature is the type of process model information used in the PID tuning methods. PID Control presents a set of coordinated contributions illustrating methods, old and new, that cover the range of process model assumptions systematically. After a review of PID technology, these ...
The differential equations of mathematical physics have a twofold character: their physical content and their mathematical solutions. This book discusses the basic tools of theoretical physicists, applied mathematicians, and engineers, providing detailed insights into linear algebra, Fourier transforms, special functions, Laplace and Poisson, diffusion and vector equations. These basic tools are a set of methods and techniques, known as the equations of mathematical physics. At first sight, they look like a collection of disparate things. Many students in theoretical physics perceive them as strange, autonomous, inflexible, and ultimately unknown objects, whose sole use resides in their bein...
This book discusses major topics in measure theory, Fourier transforms, complex analysis and algebraic topology. It presents material from a mature mathematical perspective. The text is suitable for a two-semester graduate course in analysis and will help students prepare for a research career in mathematics. After a short survey of undergraduate analysis and measure theory, the book highlights the essential theorems that have now become ubiquitous in mathematics. It studies Fourier transforms, derives the inversion theorem and gives diverse applications ranging from probability theory to mathematical physics. It reviews topics in complex analysis and gives a synthetic, rigorous development ...
None
Fourier Analysis and Approximation
Mathematical Physics with Partial Differential Equations is for advanced undergraduate and beginning graduate students taking a course on mathematical physics taught out of math departments. The text presents some of the most important topics and methods of mathematical physics. The premise is to study in detail the three most important partial differential equations in the field – the heat equation, the wave equation, and Laplace's equation. The most common techniques of solving such equations are developed in this book, including Green's functions, the Fourier transform, and the Laplace transform, which all have applications in mathematics and physics far beyond solving the above equatio...
This book covers issues related to 5G network security. The authors start by providing details on network architecture and key requirements. They then outline the issues concerning security policies and various solutions that can handle these policies. Use of SDN-NFV technologies for security enhancement is also covered. The book includes intelligent solutions by utilizing the features of artificial intelligence and machine learning to improve the performance of the 5G security protocols and models. Optimization of security models is covered as a separate section with a detailed information on the security of 5G-based edge, fog, and osmotic computing. This book provides detailed guidance and reference material for academicians, professionals, and researchers. Presents extensive information and data on research and challenges in 5G networks; Covers basic architectures, models, security frameworks, and software-defined solutions for security issues in 5G networks; Provides solutions that can help in the growth of new startups as well as research directions concerning the future of 5G networks.