You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.
"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology....There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text." —MATHEMATICAL REVIEWS
This book is about dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. A prominent role is played by the structure theory of linear operators on finite-dimensional vector spaces; the authors have included a self-contained treatment of that subject.
None
This handbook is the third volume in a series of volumes devoted to self contained and up-to-date surveys in the tehory of ordinary differential equations, written by leading researchers in the area. All contributors have made an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wide audience. These ideas faithfully reflect the spirit of this multi-volume and hopefully it becomes a very useful tool for reseach, learing and teaching. This volumes consists of seven chapters covering a variety of problems in ordinary differential equations. Both pure mathematical research and real word applications are reflected by the contributions to this volume. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real world applications - Written for mathematicians and scientists of many related fields
This book presents carefully revised versions of tutorial lectures given during a School on Artificial Neural Networks for the industrial world held at the University of Limburg in Maastricht, Belgium. The major ANN architectures are discussed to show their powerful possibilities for empirical data analysis, particularly in situations where other methods seem to fail. Theoretical insight is offered by examining the underlying mathematical principles in a detailed, yet clear and illuminating way. Practical experience is provided by discussing several real-world applications in such areas as control, optimization, pattern recognition, software engineering, robotics, operations research, and CAM.
The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.
None
This invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics; economics; biology, electric circuits and mathematical programming; theory of computation; miscellaneous. In addition, each group contains one or two articles by world leaders on its subject which comment on the influence of Smale's work, and another article by Smale with his own retrospective views.