You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Early Mathematics of Leonhard Euler gives an article-by-article description of Leonhard Euler's early mathematical works; the 50 or so mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These early pieces contain some of Euler's greatest work, the Konigsberg bridge problem, his solution to the Basel problem, and his first proof of the Euler-Fermat theorem. It also presents important results that we seldom realize are due to Euler; that mixed partial derivatives are (usually) equal, our f(x) f(x) notation, and the integrating factor in differential equations. The books shows how contributions in diverse fields are rel...
In just seven symbols, with profound and beautiful simplicity, Euler's Equation connects five of the most important numbers in mathematics. Robin Wilson explores each number in turn, then brings them together to consider the power of the equation as a whole.
Celebrating the 300th birthday of Leonhard Euler - collected articles address aspects of Euler's life and work.
How Euler Did It is a collection of 40 monthly columns that appeared on MAA Online between November 2003 and February 2007 about the mathematical and scientific work of the great 18th-century Swiss mathematician Leonhard Euler. Inside we find interesting stories about Euler's work in geometry and his solution to Cramer's paradox and its role in the early days of linear algebra. We see Euler's first proof of Fermat's little theorem for which he used mathematical induction, as well as his discovery of over a hundred pairs of amicable numbers, and his work on odd perfect numbers, about which little is known even today. Professor Sandifer based his columns on Euler's own words in the original language in which they were written. In this way, the author was able to uncover many details that are not found in other sources.
In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula—long regarded as the gold standard for mathematical beauty—and shows why it still lies at the heart of complex number theory. In some ways a sequel to Nahin's An Imaginary Tale, this book examines the many applications of complex numbers alongside intriguing stories from the history of mathematics. Dr. Euler's Fabulous Formula is accessible to any reader familiar with calculus and differential equations, and promises to inspire mathematicians for years to come.
First of two volumes tracing the development of series and products. Second edition adds extensive material from original works.
Containing more than 1,000 entries, the Dictionary of Classical and Theoretical Mathematics focuses on mathematical terms and definitions of critical importance to practicing mathematicians and scientists. This single-source reference provides working definitions, meanings of terms, related references, and a list of alternative terms and definitions. The dictionary is one of five constituent works that make up the casebound CRC Comprehensive Dictionary of Mathematics.
INTRODUCTION FOR THE UNINITIATED Heretofore, there has been no suitable introductory book that provides a solid mathematical treatment of cryptography for students with little or no background in number theory. By presenting the necessary mathematics as needed, An Introduction to Cryptography superbly fills that void. Although it is intended for the undergraduate student needing an introduction to the subject of cryptography, it contains enough optional, advanced material to challenge even the most informed reader, and provides the basis for a second course on the subject. Beginning with an overview of the history of cryptography, the material covers the basics of computer arithmetic and exp...
Now in its second edition, this textbook provides an introduction and overview of number theory based on the density and properties of the prime numbers. This unique approach offers both a firm background in the standard material of number theory, as well as an overview of the entire discipline. All of the essential topics are covered, such as the fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. New in this edition are coverage of p-adic numbers, Hensel's lemma, multiple zeta-values, and elliptic curve methods in primality testing. Key topics and features include: A solid introduction to analytic number the...