You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.
High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials.
The book addresses several aspects of thermodynamics and correlations in the strongly-interacting regime of one-dimensional bosons, a topic at the forefront of current theoretical and experimental studies. Strongly correlated systems of one-dimensional bosons have a long history of theoretical study. Their experimental realisation in ultracold atom experiments is the subject of current research, which took off in the early 2000s. Yet these experiments raise new theoretical questions, just begging to be answered. Correlation functions are readily available for experimental measurements. In this book, they are tackled by means of sophisticated theoretical methods developed in condensed matter physics and mathematical physics, such as bosonization, the Bethe Ansatz and conformal field theory. Readers are introduced to these techniques, which are subsequently used to investigate many-body static and dynamical correlation functions.
A summary of the most important results in the existence and stability of periodic solutions for ordinary differential equations achieved in the twentieth century, along with relevant applications. It differs from standard classical texts on non-linear oscillations in that it also contains linear theory; theorems are proved with mathematical rigor; and, besides the classical applications such as Van der Pol's, Linard's and Duffing's equations, most applications come from biomathematics. For graduate and Ph.D students in mathematics, physics, engineering, and biology, and as a standard reference for use by researchers in the field of dynamical systems and their applications.
This volume gives an up-to-date account of the major activities in the general area of string theory. String phenomenology, mirror symmetry, duality black hole physics, topological and conformal field theory, 2D gravity and QCD related developments are reviewed in detail.
This volume contains lectures delivered at the Les Houches Summer School 'Integrability: from statistical systems to gauge theory' held in June 2016. The School was focussed on applications of integrability to supersymmetric gauge and string theory, a subject of high and increasing interest in the mathematical and theoretical physics communities over the past decade. Relevant background material was also covered, with lecture series introducing the main concepts and techniques relevant to modern approaches to integrability, conformal field theory, scattering amplitudes, and gauge/string duality. The book will be useful not only to those working directly on integrablility in string and guage theories, but also to researchers in related areas of condensed matter physics and statistical mechanics.
This volume contains the proceedings of a conference held at the Courant Institute in 2006 to celebrate the 60th birthday of Percy A. Deift. The program reflected the wide-ranging contributions of Professor Deift to analysis with emphasis on recent developments in Random Matrix Theory and integrable systems. The articles in this volume present a broad view on the state of the art in these fields. Topics on random matrices include the distributions and stochastic processes associated with local eigenvalue statistics, as well as their appearance in combinatorial models such as TASEP, last passage percolation and tilings. The contributions in integrable systems mostly deal with focusing NLS, the Camassa-Holm equation and the Toda lattice. A number of papers are devoted to techniques that are used in both fields. These techniques are related to orthogonal polynomials, operator determinants, special functions, Riemann-Hilbert problems, direct and inverse spectral theory. Of special interest is the article of Percy Deift in which he discusses some open problems of Random Matrix Theory and the theory of integrable systems.
Reviews developments in applications of inhomogeneous models to cosmology, for graduate students and academic researchers in astrophysics.
This proceedings reports on some of the most recent advances on the interaction between Differential Geometry and Theoretical Physics, a very active and exciting area of contemporary research.The papers are grouped into the following four broad categories: Geometric Methods, Noncommutative Geometry, Quantum Gravity and Topological Quantum Field Theory. A few of the topics covered are Chern-Simons Theory and Generalizations, Knot Invariants, Models of 2D Gravity, Quantum Groups and Strings on Black Holes.