You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is the collection of papers dedicated to Yozo Matsushima on his 60th birthday, which took place on February 11, 1980. A conference in Geometry in honor of Professor Matsushima was held at the University of Notre Dame on May 14 and 15, 1980. Some of the papers in this volume were delivered on this occasion. 0 00 0\ - 15 S. Kobayashi, University 27 R. Ogawa, Loyola 42 P. Ryan, Indiana 1 W. Stoll 2 W. Kaup, University of of California at Berkeley University (Chicago) University at South Bend Tubing en 16 B.Y. Chen, 28 A. Howard 43 M. Kuga, SUNY at 3 G. Shimura, Michigan State University 29 D. Blair, Stony Brook Princeton University 17 G. Ludden, Michigan State University 44 W. Higgi...
A 1982 introduction to developments which had taken place in finite group theory related to finite geometries.
Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show...
This book provides an accessible introduction to the state of the art of representation theory of finite groups. Starting from a basic level that is summarized at the start, the book proceeds to cover topics of current research interest, including open problems and conjectures. The central themes of the book are block theory and module theory of group representations, which are comprehensively surveyed with a full bibliography. The individual chapters cover a range of topics within the subject, from blocks with cyclic defect groups to representations of symmetric groups. Assuming only modest background knowledge at the level of a first graduate course in algebra, this guidebook, intended for students taking first steps in the field, will also provide a reference for more experienced researchers. Although no proofs are included, end-of-chapter exercises make it suitable for student seminars.
An introduction to the basic theory of Hopf algebras for those familiar with basic linear and commutative algebra.
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930–2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. This volume is inspired by his work and his legacy and, while recalling historical results, presents recent developments in the geometry of symmetric spaces as well as generalizations of symmetric spaces; minimal surfaces and minimal submanifolds; totally geodesic submanifolds and their classification; Riemannian, affine, projective, and conformal connections; the $(M_{+}, M_{-})$ method and its applications; and maximal antipodal subsets. Additionally, the volume features recent achievements related to biharmonic and biconservative hypersurfaces in space forms, the geometry of Laplace operator on Riemannian manifolds, and Chen-Ricci inequalities for Riemannian maps, among other topics that could attract the interest of any scholar working in differential geometry and global analysis on manifolds.
The goal of this book is to explain, at the graduate student level, connections between tropical geometry and optimization. Building bridges between these two subject areas is fruitful in two ways. Through tropical geometry optimization algorithms become applicable to questions in algebraic geometry. Conversely, looking at topics in optimization through the tropical geometry lens adds an additional layer of structure. The author covers contemporary research topics that are relevant for applications such as phylogenetics, neural networks, combinatorial auctions, game theory, and computational complexity. This self-contained book grew out of several courses given at Technische Universität Berlin and elsewhere, and the main prerequisite for the reader is a basic knowledge in polytope theory. It contains a good number of exercises, many examples, beautiful figures, as well as explicit tools for computations using $texttt{polymake}$.
This reprint volume focuses on recent developments in knot theory arising from mathematical physics, especially solvable lattice models, Yang-Baxter equation, quantum group and two dimensional conformal field theory. This volume is helpful to topologists and mathematical physicists because existing articles are scattered in journals of many different domains including Mathematics and Physics. This volume will give an excellent perspective on these new developments in Topology inspired by mathematical physics.