You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen enormous progress over the last years and has been very successful in improving our understanding in these fascinating compact objects. The book addresses a wide spectrum of readers, from students to senior researchers. Thirteen chapters written by internationally renowned experts offer a thorough overview of the various facets of this interdisciplinary science, from neutron star formation in supernovae, pulsars, equations of state super dense matter, gravitational wave emission, to alternative theories of gravity. The book was initiated by the European Cooperation in Science and Technology (COST) Action MP1304 “Exploring fundamental physics with compact stars” (NewCompStar).
The aim of the inaugural meeting of the Sant Cugat Forum on Astrophysics was to address, in a global context, the current understanding of and challenges in high-energy emissions from isolated and non-isolated neutron stars, and to confront the theoretical picture with observations of both the Fermi satellite and the currently operating ground-based Cherenkov telescopes. Participants have also discussed the prospects for possible observations with planned instruments across the multi-wavelength spectrum (e.g. SKA, LOFAR, E-VLT, IXO, CTA) and how they will impact our theoretical understanding of these systems. In keeping with the goals of the Forum, this book not only represents the proceedings of the meeting, but also a reflection on the state-of-the-art in the topic.
Neutron stars, whether isolated or in a binary system, display a varied and complex phenomenology, often accompanied by extreme variability of many time scales, which takes the form of pulsations due to the object rotation, quasi-periodicities associated to accretion of matter, and explosions due to matter accreted on the surface or to starquakes of highly magnetized objects. This book gives an overview of the current observational and theoretical standpoint in the research on the physics under the extreme conditions that neutron stars naturally provide. The six chapters explore three physical regions of a neutron star: the space around it, where accretion and pulsar companions allow testing of general relativity its surface, where millisecond pulsation and X-ray burts provide clues about general relativistic effects and the equation of state of neutron matter its interior, of course, inaccessible to direct observations, can nevertheless, be probed with all observational parameters related to neutron star variability.
A graduate-level textbook on the astrophysics of binary star systems and their evolution Physics of Binary Star Evolution is an up-to-date textbook on the astrophysics and evolution of binary star systems. Theoretical astrophysicists Thomas Tauris and Edward van den Heuvel cover a wide range of phenomena and processes, including mass transfer and ejection, common envelopes, novae and supernovae, X-ray binaries, millisecond radio pulsars, and gravitational wave (GW) sources, and their links to stellar evolution. The authors walk through the observed properties and evolution of different types of binaries, with special emphasis on those containing compact objects (neutron stars, black holes, a...
These are the proceedings of the Sant Cugat Forum 2nd Workshop on Cosmic-ray Induced Phenomenology in Stellar Environments, held April 16-19, 2012. The aim of this Workshop was to address the current knowledge and challenges of high-energy emission from stellar environments at all scales and provide a comprehensive review of the state of the field from the observational to the theoretical perspectives. In the meeting, the prospects for possible observations with planned instruments across the multi-wavelength spectrum were analyzed and also how they impact on our understanding of these systems.
Over the last decade, astrophysical observations of neutron stars — both as isolated and binary sources — have paved the way for a deeper understanding of the structure and dynamics of matter beyond nuclear saturation density. The mapping between astrophysical observations and models of dense matter based on microscopic dynamics has been poorly investigated so far. However, the increased accuracy of present and forthcoming observations may be instrumental in resolving the degeneracy between the predictions of different equations of state. Astrophysical and laboratory probes have the potential to paint to a new coherent picture of nuclear matter — and, more generally, strong interaction...
This book is a collation of the contributions presented at a major conference on isolated neutron stars held in London in April 2006. Forty years after the discovery of radio pulsars it presents an up-to-date description of the new vision of isolated neutron stars that has emerged in recent years. The great variety of isolated neutron stars, from pulsars to magnetars, is well covered by descriptions of recent observational results and presentations of the latest theoretical interpretation of these data.
Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiation along with the electromagnetic spectrum. We believe that this volume can serve as graduate level of text including the broad range of properties of neutron stars.
This thesis describes pioneering research on the extension of plasmonics schemes to the regime of high-intensity lasers. By presenting a rich and balanced mix of experimentation, theory and simulation, it provides a comprehensive overview of the emerging field of high field plasmonics, including open issues and perspectives for future research. Combining specially designed targets and innovative materials with ultrashort, high-contrast laser pulses, the author experimentally demonstrates the effects of plasmon excitation on electron and ion emission. Lastly, the work investigates possible further developments with the help of numerical simulations, revealing the potential of plasmonics effects in the relativistic regime for advances in laser-driven sources of radiation, and for the manipulation of extreme light at the sub-micron scale.
Huangshan City, China, 1-7 July 2007