You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Stochastic modeling is a set of quantitative techniques for analyzing practical systems with random factors. This area is highly technical and mainly developed by mathematicians. Most existing books are for those with extensive mathematical training; this book minimizes that need and makes the topics easily understandable. Fundamentals of Stochastic Models offers many practical examples and applications and bridges the gap between elementary stochastics process theory and advanced process theory. It addresses both performance evaluation and optimization of stochastic systems and covers different modern analysis techniques such as matrix analytical methods and diffusion and fluid limit methods. It goes on to explore the linkage between stochastic models, machine learning, and artificial intelligence, and discusses how to make use of intuitive approaches instead of traditional theoretical approaches. The goal is to minimize the mathematical background of readers that is required to understand the topics covered in this book. Thus, the book is appropriate for professionals and students in industrial engineering, business and economics, computer science, and applied mathematics.
Operations Research (OR) began as an interdisciplinary activity to solve complex military problems during World War II. Utilizing principles from mathematics, engineering, business, computer science, economics, and statistics, OR has developed into a full fledged academic discipline with practical application in business, industry, government and m
A single source guide to operations research (OR) techniques, this book covers emerging OR methodologies in a clear, concise, and unified manner. Building a bridge between theory and practice, it begins with coverage of fundamental models and methods such as linear, nonlinear, integer, and dynamic programming, networks, simulation, queuing, invento
This new edition textbook continues down the path that the first edition, winner of the 2013 IISE/Joint Publishers Book-of-the-Year Award, successfully carved out. The textbook targets engineering students and emphasizes the use of operations research models and solution methods important in the design, control, operation, and management of global supply chains. Completely updated, Supply Chain Engineering: Models and Applications, Second Edition stresses quantitative models and methods, highlights global supplier selection and vendor risk management techniques, and discusses the use of multiple criteria decision-making models in supply chain management. The new edition includes chapters on ...
This text presents the practical application of queueing theory results for the design and analysis of manufacturing and production systems. This textbook makes accessible to undergraduates and beginning graduates many of the seemingly esoteric results of queueing theory. In an effort to apply queueing theory to practical problems, there has been considerable research over the previous few decades in developing reasonable approximations of queueing results. This text takes full advantage of these results and indicates how to apply queueing approximations for the analysis of manufacturing systems. Support is provided through the web site http://msma.tamu.edu. Students will have access to the answers of odd numbered problems and instructors will be provided with a full solutions manual, Excel files when needed for homework, and computer programs using Mathematica that can be used to solve homework and develop additional problems or term projects. In this second edition a separate appendix dealing with some of the basic event-driven simulation concepts has been added.
Filling the need for an introductory book on linear programming that discusses the important ways to mitigate parameter uncertainty, Introduction to Linear Optimization and Extensions with MATLAB provides a concrete and intuitive yet rigorous introduction to modern linear optimization. In addition to fundamental topics, the book discusses current l
This book presents contemporary issues and challenges in finance and risk management in a time of rapid transformation due to technological advancements. It includes research articles based on financial and economic data and intends to cover the emerging role of analytics in financial management, asset management, and risk management. Analytics in Finance and Risk Management covers statistical techniques for data analysis in finance It explores applications in finance and risk management, covering empirical properties of financial systems. It addresses data science involving the study of statistical and computational models and includes basic and advanced concepts. The chapters incorporate the latest methodologies and challenges facing financial and risk management and illustrate related issues and their implications in the real world. The primary users of this book will include researchers, academicians, postgraduate students, professionals in engineering and business analytics, managers, consultants, and advisors in IT firms, financial markets, and services domains.
This book provides the key technologies involved in an organization’s digital transformation. It offers a deep understanding of the key technologies (Blockchain, AI, Big Data, IoT, etc.) involved and details the impact, the decision-making process, and the interplay between technologies, business models, and operations. Managing the Digital Transformation: Aligning Technologies, Business Models, and Operations provides frameworks and models to support digital transformation projects. The book presents the importance of digital transformation as a resilience approach to the operations processes and business models. It covers the essential elements integrating the technology, the organizatio...
None
This book provides formal and informal definitions and taxonomies for self-aware computing systems, and explains how self-aware computing relates to many existing subfields of computer science, especially software engineering. It describes architectures and algorithms for self-aware systems as well as the benefits and pitfalls of self-awareness, and reviews much of the latest relevant research across a wide array of disciplines, including open research challenges. The chapters of this book are organized into five parts: Introduction, System Architectures, Methods and Algorithms, Applications and Case Studies, and Outlook. Part I offers an introduction that defines self-aware computing system...