You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Biotremology is a new and emerging discipline in biological sciences that covers all aspects of behavior associated with substrate-borne mechanical waves. This volume provides state-of-the-art reviews and technical contributions from leading experts and invited younger researchers on topics from signal production and transmission to perception in its ecological context. Reviews about the knowledge of well-studied groups are complemented with perspectives on the study of less-explored groups or contexts. Special attention is given to practical issues in measuring substrate-borne vibrations as well as to applied biotremology. The book appeals to all those interested in communication and vibrational behavior.
This volume is a self-contained companion piece to Studying Vibrational Communication, published in 2014 within the same series. The field has expanded considerably since then, and has even acquired a name of its own: biotremology. In this context, the book reports on new concepts in this fascinating discipline, and features chapters on state-of-the art methods for studying behavior tied to substrate-borne vibrations, as well as an entire section on applied biotremology. Also included are a historical contribution by pioneers in the field and several chapters reviewing the advances that have been made regarding specific animal taxa. Other new topics covered are vibrational communication in vertebrates, multimodal communication, and biotremology in the classroom, as well as in art and music. Given its scope, the book will appeal to all those interested in communication and vibrational behavior, but also to those seeking to learn about an ancient mode of communication.
Advances in Insect Physiology, Volume 61 highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Acoustic signaling in Orthoptera, Sound production in Drosophila melanogaster, and Communication by surface borne mechanical waves in insects. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Insect Physiology series
Advances in Insect Physiology, Volume 59, examines the molecular and developmental origins of insect extended phenotypes, their diverse physiological functions, their consequences for the ecology and evolution of insects, and their biotic partners. Chapters cover recent ideas about the significance and roles of extended phenotypes and provide overviews of the latest advances. Written for a broad audience of researchers and students, the book's chapters establish extended phenotypes as focal structures for understanding genotype-to-phenotype maps, the origins and consequences of complex traits among multiple interacting partners, and the roles they may play in providing resilience against climate change. Compiles and synthesizes the latest advances in understanding extended phenotypes Provides detailed information on molecular and cellular mechanisms underpinning formation and control of extended phenotypes Gives comprehensive implications of extended phenotypes for ecology, evolution and applied systems
This book offers an essential introduction for all graduate students and researchers who are working on or interested in mechanotransduction using fruit flies as their model organisms. Designed for accessibility, it follows a simple five-chapter structure, beginning with a general introduction to mechanotransduction in physiology (Chapter 1) and some basic considerations on the principles behind mechanotransduction processes (Chapter 2). In turn, Chapters 3, 4 and 5 focus on mechanoreceptors in Drosophila melanogaster. Chapter 3 explains how the fly’s mechanosensitive cells (i.e. mechanoreceptors) contribute to its daily life, while Chapter 4 explores the ultrastructural and mechanical basis for the working mechanisms of various fly mechanoreceptors. Lastly, Chapter 5 elaborates on the structure, function and physiology of mechanosensitive molecules in fly mechanoreceptors. Accordingly, the book provides an overall framework, helping readers understand mechanosensory transduction, from the physiological level to the molecular level.
This volume explains the key ideas, questions and methods involved in studying the hidden world of vibrational communication in animals. The authors dispel the notion that this form of communication is difficult to study and show how vibrational signaling is a key to social interactions in species that live in contact with a substrate, whether it be a grassy lawn, a rippling stream or a tropical forest canopy. This ancient and widespread form of social exchange is also remarkably understudied. A frontier in animal behavior, it offers unparalleled opportunities for discovery and for addressing general questions in communication and social evolution. In addition to reviews of advances made in the study of several animal taxa, this volume also explores topics such as vibrational communication networks, the interaction of acoustic and vibrational communication, the history of the field, the evolution of signal production and reception and establishing a common vocabulary.
Biotremology is a new and emerging discipline in biological sciences that covers all aspects of behavior associated with substrate-borne mechanical waves. This volume provides state-of-the-art reviews and technical contributions from leading experts and invited younger researchers on topics from signal production and transmission to perception in its ecological context. Reviews about the knowledge of well-studied groups are complemented with perspectives on the study of less-explored groups or contexts. Special attention is given to practical issues in measuring substrate-borne vibrations as well as to applied biotremology. The book appeals to all those interested in communication and vibrational behavior.