You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated...
The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.
Earthquakes are nearly unique among natural phenomena - they affect virtually everything within a region, from massive buildings and bridges, down to the furnishings within a home. Successful earthquake engineering therefore requires a broad background in subjects, ranging from the geologic causes and effects of earthquakes to understanding the imp
The two volume International Handbook of Earthquake and Engineering Seismology represents the International Association of Seismology and Physics of the Earth's Interior's (IASPEI) ambition to provide a comprehensive overview of our present knowledge of earthquakes and seismology. This state-of-the-art work is the only reference to cover all aspects of seismology--a "resource library" for civil and structural engineers, geologists, geophysicists, and seismologists in academia and industry around the globe.Part B, by more than 100 leading researchers from major institutions of science around the globe, features 34 chapters detailing strong-motion seismology, earthquake engineering, quake prediction and hazards mitigation, as well as detailed reports from more than 40 nations. Also available is The International Handbook of Earthquake and Engineering Seismology, Part A. - Authoritative articles by more than 100 leading scientists - Extensive glossary of terminology plus 2000+ biographical sketches of notable seismologists
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and const...