Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Advances in Neural Information Processing Systems 17
  • Language: en
  • Pages: 1710

Advances in Neural Information Processing Systems 17

  • Type: Book
  • -
  • Published: 2005
  • -
  • Publisher: MIT Press

Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.

The Deep Learning Revolution
  • Language: en
  • Pages: 354

The Deep Learning Revolution

  • Type: Book
  • -
  • Published: 2018-10-23
  • -
  • Publisher: MIT Press

How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of...

Advances in Neural Information Processing Systems 9
  • Language: en
  • Pages: 1128

Advances in Neural Information Processing Systems 9

  • Type: Book
  • -
  • Published: 1997
  • -
  • Publisher: MIT Press

The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes neural networks and genetic algorithms, cognitive science, neuroscience and biology, computer science, AI, applied mathematics, physics, and many branches of engineering. Only about 30% of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. All of the papers presented appear in these proceedings.

Advances in Neural Information Processing Systems 13
  • Language: en
  • Pages: 1136

Advances in Neural Information Processing Systems 13

  • Type: Book
  • -
  • Published: 2001
  • -
  • Publisher: MIT Press

The proceedings of the 2000 Neural Information Processing Systems (NIPS) Conference.The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2000 conference.

Advances in Neural Information Processing Systems 12
  • Language: en
  • Pages: 1124

Advances in Neural Information Processing Systems 12

  • Type: Book
  • -
  • Published: 2000
  • -
  • Publisher: MIT Press

The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.

Handbook on Neural Information Processing
  • Language: en
  • Pages: 547

Handbook on Neural Information Processing

This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: Deep architectures Recurrent, recursive, and graph neural networks Cellular neural networks Bayesian networks Approximation capabilities of neural networks Semi-supervised learning Statistical relational learning Kernel methods for structured data Multiple classifier systems Self organisation and modal learning Applications to content-based image retrieval, text mining in large document collections, and bioinformatics This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms.

Neural Information Processing
  • Language: en
  • Pages: 1397

Neural Information Processing

  • Type: Book
  • -
  • Published: 2004-10-29
  • -
  • Publisher: Springer

It is our great pleasure to welcome you to the 11th International Conference on Neural Information Processing (ICONIP 2004) to be held in Calcutta. ICONIP 2004 is organized jointly by the Indian Statistical Institute (ISI) and Jadavpur University (JU). We are con?dent that ICONIP 2004, like the previous conf- ences in this series,will providea forum for fruitful interactionandthe exchange of ideas between the participants coming from all parts of the globe. ICONIP 2004 covers all major facets of computational intelligence, but, of course, with a primary emphasis on neural networks. We are sure that this meeting will be enjoyable academically and otherwise. We are thankful to the track chairs...

Large-scale Kernel Machines
  • Language: en
  • Pages: 409

Large-scale Kernel Machines

  • Type: Book
  • -
  • Published: 2007
  • -
  • Publisher: MIT Press

Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale ...

Advances in Neural Information Processing Systems 7
  • Language: en
  • Pages: 1180

Advances in Neural Information Processing Systems 7

  • Type: Book
  • -
  • Published: 1995
  • -
  • Publisher: MIT Press

November 28-December 1, 1994, Denver, Colorado NIPS is the longest running annual meeting devoted to Neural Information Processing Systems. Drawing on such disparate domains as neuroscience, cognitive science, computer science, statistics, mathematics, engineering, and theoretical physics, the papers collected in the proceedings of NIPS7 reflect the enduring scientific and practical merit of a broad-based, inclusive approach to neural information processing. The primary focus remains the study of a wide variety of learning algorithms and architectures, for both supervised and unsupervised learning. The 139 contributions are divided into eight parts: Cognitive Science, Neuroscience, Learning ...

Unsupervised Learning
  • Language: en
  • Pages: 420

Unsupervised Learning

  • Type: Book
  • -
  • Published: 1999-05-24
  • -
  • Publisher: MIT Press

Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.