You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume reflects the latest developments in the area of wavelet analysis and its applications. Since the cornerstone lecture of Yves Meyer presented at the ICM 1990 in Kyoto, to some extent, wavelet analysis has often been said to be mainly an applied area. However, a significant percentage of contributions now are connected to theoretical mathematical areas, and the concept of wavelets continuously stretches across various disciplines of mathematics. Key topics: Approximation and Fourier Analysis Construction of Wavelets and Frame Theory Fractal and Multifractal Theory Wavelets in Numerical Analysis Time-Frequency Analysis Adaptive Representation of Nonlinear and Non-stationary Signals Applications, particularly in image processing Through the broad spectrum, ranging from pure and applied mathematics to real applications, the book will be most useful for researchers, engineers and developers alike.
An Introduction to Frames is an introduction to redundant signal representations called frames. These representations have recently emerged as yet another powerful tool in the signal processing toolbox, spurred by a host of recent applications requiring some level of redundancy. It asks the question: Why and where should one use frames? And answers emphatically: Anywhere where redundancy is a must. It then goes on to discuss a host of applications that richly illustrate that answer. An Introduction to Frames is geared primarily toward engineering students and those without extensive mathematical training. It is also intended to help researchers and practitioners decide whether frames are the right tool for their application.
Most existing books on wavelets are either too mathematical or they focus on too narrow a specialty. This book provides a thorough treatment of the subject from an engineering point of view. It is a one-stop source of theory, algorithms, applications, and computer codes related to wavelets. This second edition has been updated by the addition of: a section on "Other Wavelets" that describes curvelets, ridgelets, lifting wavelets, etc a section on lifting algorithms Sections on Edge Detection and Geophysical Applications Section on Multiresolution Time Domain Method (MRTD) and on Inverse problems
This book constitutes the refereed proceedings of the First Pacific Rim Symposium on Image and Video Technology, PSIVT 2006, held in Hsinchu, Taiwan in December 2006. The 76 revised full papers and 58 revised poster papers cover a wide range of topics, including all aspects of video and multimedia, both technical and artistic perspectives and both theoretical and practical issues.
Wavelets are transforming current thinking in a wide range of fields by allowing for intermittent information and non- homogeneous behaviour. This book examines their increasing use and potential in many areas, including physical systems, turbulence, statistics, mechanical engineering, neural networks, physiology, vision engineering, signal processing, economics and astronomy. It is a must for specialists and non specialists alike.
"Beyond Wavelets" presents state-of-the-art theories, methods, algorithms, and applications of mathematical extensions for classical wavelet analysis. Wavelets, introduced 20 years ago byMorlet and Grossmann and developed very rapidly during the 1980's and 1990's, has created a common link between computational mathematics and other disciplines of science and engineering.Classical wavelets have provided effective and efficient mathematical tools for time-frequency analysis which enhances and replaces the Fourier approach.However, with the current advances in science and technology, there is an immediate need to extend wavelet mathematical tools as well. "Beyond Wavelets" presents a list of i...
Discusses recent advances in the related technologies of multimedia computers, videophones, video-over-Internet, HDTV, digital satellite TV and interactive computer games. The text analyzes ways of achieving more effective navigation techniques, data management functions, and higher throughout networking. It synthesizes data on visual information venues, tracking the enormous commercial potential for new components and compatible systems.
Imaging for Forensics and Security: From Theory to Practice provides a detailed analysis of new imaging and pattern recognition techniques for the understanding and deployment of biometrics and forensic techniques as practical solutions to increase security. It contains a collection of the recent advances in the technology ranging from theory, design, and implementation to performance evaluation of biometric and forensic systems. This book also contains new methods such as the multiscale approach, directional filter bank, and wavelet maxima for the development of practical solutions to biometric problems. The book introduces a new forensic system based on shoeprint imagery with advanced techniques for use in forensics applications. It also presents the concept of protecting the originality of biometric images stored in databases against intentional and unintentional attacks and fraud detection data in order to further increase the security.