You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains papers from the 7th International Conference on Difference Equations held at Hunan University (Changsa, China), a satellite conference of ICM2002 Beijing. The volume captures the spirit of the meeting and includes peer-reviewed survey papers, research papers, and open problems and conjectures. Articles cover stability, oscillation, chaos, symmetries, boundary value problems and bifurcations for discrete dynamical systems, difference-differential equations, and discretization of continuous systems. The book presents state-of-the-art research in these important areas. It is suitable for graduate students and researchers in difference equations and related topics.
Intended for researchers, numerical analysts, and graduate students in various fields of applied mathematics, physics, mechanics, and engineering sciences, Applications of Lie Groups to Difference Equations is the first book to provide a systematic construction of invariant difference schemes for nonlinear differential equations. A guide to methods
This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939–2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.
New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with MapleTM, Mathematica®, and MATLAB® Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They outline the methods in a schematic, simplified manner and arrange the material in increasing order of complexity.
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
This is the fourth conference on “Supersymmetry and Perturbation Theory” (SPT 2002). The proceedings present original results and state-of-the-art reviews on topics related to symmetry, integrability and perturbation theory, etc.
This volume is the fifth in a series of proceedings which started in 1999. The contributions include the latest results on the theory of wave propagation, extended thermodynamics, and the stability of the solutions to partial differential equations.
This volume contains papers based on some of the talks given at the NSF-CBMS conference on ``The Geometrical Study of Differential Equations'' held at Howard University (Washington, DC). The collected papers present important recent developments in this area, including the treatment of nontransversal group actions in the theory of group invariant solutions of PDEs, a method for obtaining discrete symmetries of differential equations, the establishment of a group-invariant version of the variational complex based on a general moving frame construction, the introduction of a new variational complex for the calculus of difference equations and an original structural investigation of Lie-Backlun...