You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This Element is a concise, high-level introduction to the philosophy of physical symmetry. It begins with the notion of 'physical representation' (the kind of empirical representation of nature that we effect in doing physics), and then lays out the historically and conceptually central case of physical symmetry that frequently falls under the rubric of 'the Relativity Principle,' or 'Galileo's Ship.' This material is then used as a point of departure to explore the key hermeneutic challenge concerning physical symmetry in the past century, namely understanding the physical significance of the notion of 'local' gauge symmetry. The approach taken stresses both the continuity with historically important themes such as the Relativity Principle, as well as novel insights earned by working with contemporary representational media such as the covariant phase space formalism.
Despite its apparent complexity, our world seems to be governed by simple laws of physics. This volume provides a philosophical introduction to such laws. I explain how they are connected to some of the central issues in philosophy, such as ontology, possibility, explanation, induction, counterfactuals, time, determinism, and fundamentality. I suggest that laws are fundamental facts that govern the world by constraining its physical possibilities. I examine three hallmarks of laws-simplicity, exactness, and objectivity-and discuss whether and how they may be associated with laws of physics.
This Element has three main aims. First, it aims to help the reader understand the concept of computation that Turing developed, his corresponding results, and what those results indicate about the limits of computational possibility. Second, it aims to bring the reader up to speed on analyses of computation in physical systems which provide the most general characterizations of what it takes for a physical system to be a computational system. Third, it aims to introduce the reader to some different kinds of quantum computers, describe quantum speedup, and present some explanation sketches of quantum speedup. If successful, this Element will equip the reader with a basic knowledge necessary for pursuing these topics in more detail.
The techniques described in this monograph form the basis of running an optimally efficient modern day power system. It is a must-read for all students and researchers working on the cutting edge of electric power systems.
This Element explores what it means for two theories in physics to be equivalent (or inequivalent), and what lessons can be drawn about their structure as a result. It does so through a twofold approach. On the one hand, it provides a synoptic overview of the logical tools that have been employed in recent philosophy of physics to explore these topics: definition, translation, Ramsey sentences, and category theory. On the other, it provides a detailed case study of how these ideas may be applied to understand the dynamical and spatiotemporal structure of Newtonian mechanics - in particular, in light of the symmetries of Newtonian theory. In so doing, it brings together a great deal of exciting recent work in the literature, and is sure to be a valuable companion for all those interested in these topics.
This Element introduces major issues in the epistemology of experimental physics through discussion of canonical physics experiments and some that have not yet received much philosophical attention. The primary challenge is to make sense of how physicists justify crucial decisions made in the course of empirical research. Judging a result as epistemically significant or as calling for further technical scrutiny of the equipment is one important context of such decisions. Judging whether the instrument has been calibrated, and which data should be included in the analysis are others. To what extent is it possible to offer philosophical analysis, systematization, and prescriptions regarding such decisions? To what extent can there be explicit epistemic justification for them? The primary aim of this Element is to show how a nuanced understanding of science in practice informs an epistemology of experimental physics that avoids strong social constructivism.
None
Silent films were, of course, never silent at all. However, the sound that used to accompany the screen picture in the early days of cinema has been neglected as an area of study. Altman explores the various musical, narrative, and even synchronized sound systems that enriched cinema before Jolson spoke.