You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Geometry and topology are subjects generally considered to be "pure" mathematics. Recently, however, some of the methods and results in these two areas have found new utility in both wet-lab science (biology and chemistry) and theoretical physics. Conversely, science is influencing mathematics, from posing questions that call for the construction of mathematical models to exporting theoretical methods of attack on long-standing problems of mathematical interest. Based on an AMS Short Course held in January 1992, this book contains six introductory articles on these intriguing new connections. There are articles by a chemist and a biologist about mathematics, and four articles by mathematicians writing about science and mathematics involved. Because this book communicates the excitement and utility of mathematics research at an elementary level, it is an excellent textbook in an advanced undergraduate mathematics course.
The Harvey Society was founded in 1905 by thirteen New York scientists and physicians with the purpose of forging a "closer relationship between the purely practical side of medicine and the results of laboratory investigation." The Society distributes scientific knowledge in selected areas of anatomy, physiology, pathology, bacteriology, pharmacology, and physiological and pathological chemistry through public lectures, which are published annually. Series 94, 1998-1999 covers themes in neurogenetic studies, the role of tyrosine phosphorylation in cell growth and disease, the biology of the epidermis and its appendages, and the phenotypic diversity of monogenic disease.
None
Over three hundred years ago, Galileo is reported to have said, "The laws of nature are written in the language of mathematics." Often mathematics and science go hand in hand, with one helping develop and improve the other. Discoveries in science, for example, open up new advances in statistics, computer science, operations research, and pure and applied mathematics which in turn enabled new practical technologies and advanced entirely new frontiers of science. Despite the interdependency that exists between these two disciplines, cooperation and collaboration between mathematical scientists and scientists have only occurred by chance. To encourage new collaboration between the mathematical ...
Mechanistic Studies of DNA Replication and Genetic Recombination emerged from a symposium on DNA replication and genetic recombination held from March 16-21, 1980 in Keystone, Colorado. The event featured 30 plenary session talks, 13 workshop discussion groups, and the 210 poster sessions. The studies described in this book are paving the way for the elucidation of other basic genetic mechanisms, including ""new"" areas in molecular genetics such as those of eukaryotic gene expression and the transposition of mobile genetic elements. This book is divided into 10 parts: summaries of workshop discussion groups (Part I); studies on eukaryotic model systems for DNA replication (Part II); studies on bacterial replication origins (Part III); studies on replication origins of bacterial phages and plasmids (Part IV); studies on eukaryotic replication origins (Part V); studies on prokaryotic replication enzymology (Part VI); studies on eukaryotic replication enzymology (Part VII); studies on the fidelity of DNA replication (Part VIII); studies on DNA topoisomerases (Part IX); and studies of genetic recombination mechanisms (Part X).
Contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Artin's Braid Group, held at the University of California, Santa Cruz, in July 1986. This work is suitable for graduate students and researchers who wish to learn more about braids, as well as more experienced workers in this area.
DNA Nanoscience: From Prebiotic Origins to Emerging Nanotechnology melds two tales of DNA. One is a look at the first 35 years of DNA nanotechnology to better appreciate what lies ahead in this emerging field. The other story looks back 4 billion years to the possible origins of DNA which are shrouded in mystery. The book is divided into three parts comprised of 15 chapters and two Brief Interludes. Part I includes subjects underpinning the book such as a primer on DNA, the broader discipline of nanoscience, and experimental tools used by the principals in the narrative. Part II examines the field of structural DNA nanotechnology, founded by biochemist/crystallographer Nadrian Seeman, that uses DNA as a construction material for nanoscale structures and devices, rather than as a genetic material. Part III looks at the work of physicists Noel Clark and Tommaso Bellini who found that short DNA (nanoDNA) forms liquid crystals that act as a structural gatekeeper, orchestrating a series of self-assembly processes using nanoDNA. This led to an explanation of the polymeric structure of DNA and of how life may have emerged from the prebiotic clutter.