You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Metamaterials:Theory, Design, and Applications goes beyond left-handed materials (LHM) or negative index materials (NIM) and focuses on recent research activity. Included here is an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas, a presentation of general theory on artificial metamaterials composed of periodic structures, coverage of a new rapid design method for inhomogeneous metamaterials, which makes it easier to design a cloak, and new developments including but not limited to experimental verification of invisible cloaks, FDTD simulations of invisible cloaks, the microwave and RF applications of metamaterials, sub-wavelength imaging using anisotropic metamaterials, dynamical metamaterial systems, photonic metamaterials, and magnetic plasmon effects of metamaterials.
Patterning or lithography is at the core of modern science and technology and cuts across all disciplines. With the emergence of nanotechnology, conventional methods based on electron beam lithography and extreme ultraviolet photolithography have become prohibitively expensive. As a result, a number of simple and unconventional methods have been introduced, beginning first with research demonstrations in the mid 1990s. This book focuses on these unconventional patterning techniques and their applications to optics, organic devices, electronic devices, biological devices, and fluidics.
Regeneration, the homeostatic ability to maintain tissue structure in the face of normal cell turnover or loss of tissue damaged by trauma or disease, is an essential developmental process that continues throughout life. As recently as a decade ago, any serious discussion of the possibility of regeneration becoming a practical medical tool in the near future had the air of science fiction or over-optimistic speculation. The term “regenerative medicine” was certainly on many lips but few actually expected to soon see it applied in a clinical setting. A tidal wave of discovery has changed that and investigating the cellular mechanisms of natural regeneration has become one of the hottest t...
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innov...
The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline. The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult. The fourteen...
Additive manufacturing, also called rapid prototyping or 3D printing is a disruptive manufacturing technique with a significant impact in electronics. With 3D printing, bulk objects with circuitry are embedded in the volume of an element or conformally coated on the surface of existing parts, allowing design and manufacturing of smaller and lighter products with fast customisation. The book covers both materials selection and techniques. The scope also covers the research areas of additive manufacturing of passive and active components, sensors, energy storage, bioelectronics and more.
Now in its revised, updated Seventh edition, this text provides residents and medical students with a broad overview of adult and pediatric orthopaedics. Major sections focus on general and regional disorders of the musculoskeletal system.
Compact antennas are a subject of growing interest from industry and scientific community to equip wireless communicating objects. The need for high performance small antennas and RF front ends is the challenge for future and next generation mobile devices. This book brings the body of knowledge on compact antennas into a single comprehensive volume. It is designed to meet the needs of electrical engineering and physics students to the senior undergraduate and beginning graduate levels, and those of practicing engineers.
The book "Advances in Nanocomposite Technology" contains 16 chapters divided in three sections. Section one, "Electronic Applications", deals with the preparation and characterization of nanocomposite materials for electronic applications and studies. In section two, "Material Nanocomposites", the advanced research of polymer nanocomposite material and polymer-clay, ceramic, silicate glass-based nanocomposite and the functionality of graphene nanocomposites is presented. The Human and Bioapplications section is describing how nanostructures are synthesized and draw attention on wide variety of nanostructures available for biological research and treatment applications. We believe that this book offers broad examples of existing developments in nanocomposite technology research and an excellent introduction to nanoelectronics, nanomaterial applications and bionanocomposites.