You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This work is closely tied to the renowned mathematics textbook series known as UNITEXT, tailored for university students pursuing bachelors or masters degrees. What sets this particular book apart in the Springer collection is its unique origin: it has been crafted through a meticulous process involving interviews handled with and by world-class mathematicians. The content featured in this book revolve around a highly relevant and engaging topic: Optimal Transport. These conversations involve not only authors from the UNITEXT series, but also members of the series Editorial Board. Additionally, they feature prominent figures in the field, including a Field Medalist. This work provides reader...
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
This book is devoted to a theory of gradient ?ows in spaces which are not nec- sarily endowed with a natural linear or di?erentiable structure. It is made of two parts, the ?rst one concerning gradient ?ows in metric spaces and the second one 2 1 devoted to gradient ?ows in the L -Wasserstein space of probability measures on p a separable Hilbert space X (we consider the L -Wasserstein distance, p? (1,?), as well). The two parts have some connections, due to the fact that the Wasserstein space of probability measures provides an important model to which the “metric” theory applies, but the book is conceived in such a way that the two parts can be read independently, the ?rst one by the reader more interested to Non-Smooth Analysis and Analysis in Metric Spaces, and the second one by the reader more oriented to theapplications in Partial Di?erential Equations, Measure Theory and Probability.
This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces – known as RCD spaces – satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of “infinitesimally Hilbertian” metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.
In recent years flows in networks have attracted the interest of many researchers from different areas, e.g. applied mathematicians, engineers, physicists, economists. The main reason for this ubiquity is the wide and diverse range of applications, such as vehicular traffic, supply chains, blood flow, irrigation channels, data networks and others. This book presents an extensive set of notes by world leaders on the main mathematical techniques used to address such problems, together with investigations into specific applications. The main focus is on partial differential equations in networks, but ordinary differential equations and optimal transport are also included. Moreover, the modeling is completed by analysis, numerics, control and optimization of flows in networks. The book will be a valuable resource for every researcher or student interested in the subject.
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.
The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.
Suppose $G$ is a real reductive algebraic group, $\theta$ is an automorphism of $G$, and $\omega$ is a quasicharacter of the group of real points $G(\mathbf{R})$. Under some additional assumptions, the theory of twisted endoscopy associates to this triple real reductive groups $H$. The Local Langlands Correspondence partitions the admissible representations of $H(\mathbf{R})$ and $G(\mathbf{R})$ into $L$-packets. The author proves twisted character identities between $L$-packets of $H(\mathbf{R})$ and $G(\mathbf{R})$ comprised of essential discrete series or limits of discrete series.
The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration can occur only on boundary points with nonpositive mean curvature when $n=3$ or $n\geq 7$. As a direct consequence, they prove the validity of the Lin-Ni's conjecture in dimension $n=3$ and $n\geq 7$ for mean convex domains and with bounded energy. Recent examples by Wang-Wei-Yan show that the bound on the energy is a necessary condition.