You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
``It is difficult to define the genre of the book. It is not a problem book, nor a textbook, nor a `book for reading about mathematics'. It is most of all reminiscent of a good lecture course, from which a thoughtful student comes away with more than was actually spoken about in the lectures.'' --from the Preface by A. S. Merkurjev If you are acquainted with mathematics at least to the extent of a standard high school curriculum and like it enough to want to learn more, and if, in addition, you are prepared to do some serious work, then you should start studying this book. An understanding of the material of the book requires neither a developed ability to reason abstractly nor skill in usin...
This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".
Discusses, from a working mathematician's point of view, the mystery of mathematical intuition: Why are certain mathematical concepts more intuitive than others? And to what extent does the 'small scale' structure of mathematical concepts and algorithms reflect the workings of the human brain?
This unique book provides the reader with a thorough background in almost every aspect of lightning and its impact on electrical and electronic equipment. The contents range from basic discharge processes in air through transient electromagnetic field generation and interaction with overhead lines and underground cables, to lightning protection and testing techniques. This book is of value to anyone designing, installing or commissioning equipment which needs to be secured against lightning strikes, as well as being a sound introduction to research students working in the field.
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
Historical introduction -- The Riemann integral -- The Darboux integral -- A functional zoo -- Another approach : measure theory -- The Lebesgue integral -- The Gauge integral -- Stieltjes-type integrals and extensions -- A look back -- Afterword : L2 spaces and Fourier series