You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Dimensional quantities such as length, mass and charge, i.e., numbers combined with a conventional unit, are essential components of theories in the sciences, especially physics, chemistry and biology. Do they represent a world with absolute physical magnitudes, or are they merely magnitude ratios in disguise? Would we notice a difference if all the distances or charges in the world suddenly doubled? These central questions of this Element are illustrated by imagining how one would convey the meaning of a kilogram to aliens if one were only allowed to communicate via Morse code.
This is an open access book. This book, the first edited collection of its kind, explores the recent emergence of philosophical research in astrophysics. It assembles a variety of original essays from scholars who are currently shaping this field, and it combines insightful overviews of the current state of play with novel, significant contributions. It therefore provides an ideal source for understanding the current debates in philosophy of astrophysics, and it offers new ideas for future cutting-edge research. The selection of essays offered in this book addresses methodological and metaphysical questions that target a wide range of topics, including dark matter, black holes, astrophysical observations and modelling. The book serves as the first standard resource in philosophy of astrophysics for all scholars who work in the field and want to expand or deepen their knowledge, but it also provides an accessible guide for all those philosophers and scientists who are interested in getting a first, basic understanding of the main issues in philosophy of astrophysics.
Metaphysics has shifted ground, moving away from necessity and possibility as the lens through which we look at things. Ted Sider shapes the agenda for the subject by exploring how this shift transforms the project of understanding the objects, properties, and quantities of the universe, and the relations between them, in terms of structures.
The Element reconstructs, analyses and compares different derivational routes to a grounding of the Arrow of Time in entropy. It also evaluates the link between entropy and visible disorder, and the related claim of an alignment of the Arrow of Time with a development from order to visible disorder. The Element identifies three different entropy-groundings for the Arrow of Time: (i) the Empirical Arrow of Time, (ii) the Universal Statistical Arrow of Time, and (iii) the Local Statistical Arrow of Time. The Element will also demonstrate that it is unlikely that high entropy states will always coincide with visible disorder. Therefore, it will dispute that there is a strong link between the Arrow of Time and visible disorder.
This Element is a concise, high-level introduction to the philosophy of physical symmetry. It begins with the notion of 'physical representation' (the kind of empirical representation of nature that we effect in doing physics), and then lays out the historically and conceptually central case of physical symmetry that frequently falls under the rubric of 'the Relativity Principle,' or 'Galileo's Ship.' This material is then used as a point of departure to explore the key hermeneutic challenge concerning physical symmetry in the past century, namely understanding the physical significance of the notion of 'local' gauge symmetry. The approach taken stresses both the continuity with historically important themes such as the Relativity Principle, as well as novel insights earned by working with contemporary representational media such as the covariant phase space formalism.
Despite its apparent complexity, our world seems to be governed by simple laws of physics. This volume provides a philosophical introduction to such laws. I explain how they are connected to some of the central issues in philosophy, such as ontology, possibility, explanation, induction, counterfactuals, time, determinism, and fundamentality. I suggest that laws are fundamental facts that govern the world by constraining its physical possibilities. I examine three hallmarks of laws-simplicity, exactness, and objectivity-and discuss whether and how they may be associated with laws of physics.
None
pt. 1. List of patentees.--pt. 2. Index to subjects of inventions.