You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Engineers in multiple disciplines—environmental, chemical, civil, and mechanical—contribute to our understanding of air pollution control. To that end, Noel de Nevers has incorporated these multiple perspectives into an engaging and accessible overview of the subject. While based on the fundamentals of chemical engineering, the book is accessible to any reader with only one year of college chemistry. In addition to detailed discussions of individual air pollutants and the theory and practice of air pollution control devices, de Nevers devotes seven chapters to topics that influence device selection and design, such as atmospheric models and U.S. air pollution law. The Third Edition’s many in-text examples and end-of-chapter problems provide a more complex treatment of the concepts presented. Significant updates include more discussion on the problem of greenhouse gas emissions and a thorough look at the Volkswagen diesel-emission scandal.
Air pollution control can be approached from a number of different engineering disciplines environmental, chemical, civil, and mechanical. To that end, Noel de Nevers has written an engaging overview of the subject. While based on the fundamentals of chemical engineering, the treatment is accessible to readers with only one year of college chemistry. In addition to discussions of individual air pollutants and the theory and practice of air pollution control devices, de Nevers devotes about half the book to topics that influence device selection and design, such as atmospheric models and U.S. air pollution law. The generous number of end-of-chapter problems are designed to develop more complex thinking about the concepts presented and integrate them with readers personal experienceincreasing the likelihood of deeper understanding.
This book concentrates on the topic of physical and chemical equilibrium. Using the simplest mathematics along with numerous numerical examples it accurately and rigorously covers physical and chemical equilibrium in depth and detail. It continues to cover the topics found in the first edition however numerous updates have been made including: Changes in naming and notation (the first edition used the traditional names for the Gibbs Free Energy and for Partial Molal Properties, this edition uses the more popular Gibbs Energy and Partial Molar Properties,) changes in symbols (the first edition used the Lewis-Randal fugacity rule and the popular symbol for the same quantity, this edition only uses the popular notation,) and new problems have been added to the text. Finally the second edition includes an appendix about the Bridgman table and its use.
None
Fluid Mechanics for Chemical Engineers, third edition retains the characteristics that made this introductory text a success in prior editions. It is still a book that emphasizes material and energy balances and maintains a practical orientation throughout. No more math is included than is required to understand the concepts presented. To meet the demands of today's market, the author has included many problems suitable for solution by computer. Two brand new chapters are included. The first, on mixing, augments the book's coverage of practical issues encountered in this field. The second, on computational fluid dynamics (CFD), shows students the connection between hand and computational fluid dynamics.
Phase Equilibria in Chemical Engineering is devoted to the thermodynamic basis and practical aspects of the calculation of equilibrium conditions of multiple phases that are pertinent to chemical engineering processes. Efforts have been made throughout the book to provide guidance to adequate theory and practice. The book begins with a long chapter on equations of state, since it is intimately bound up with the development of thermodynamics. Following material on basic thermodynamics and nonidealities in terms of fugacities and activities, individual chapters are devoted to equilibria primarily between pairs of phases. A few topics that do not fit into these categories and for which the stat...
A Practical, Up-to-Date Introduction to Applied Thermodynamics, Including Coverage of Process Simulation Models and an Introduction to Biological Systems Introductory Chemical Engineering Thermodynamics, Second Edition, helps readers master the fundamentals of applied thermodynamics as practiced today: with extensive development of molecular perspectives that enables adaptation to fields including biological systems, environmental applications, and nanotechnology. This text is distinctive in making molecular perspectives accessible at the introductory level and connecting properties with practical implications. Features of the second edition include Hierarchical instruction with increasing l...
The only textbook that applies thermodynamics to real-world process engineering problems This must-read for advanced students and professionals alike is the first book to demonstrate how chemical thermodynamics work in the real world by applying them to actual engineering examples. It also discusses the advantages and disadvantages of the particular models and procedures, and explains the most important models that are applied in process industry. All the topics are illustrated with examples that are closely related to practical process simulation problems. At the end of each chapter, additional calculation examples are given to enable readers to extend their comprehension. Chemical Thermody...
Fluid Mechanics for Chemical Engineers, third edition retains the characteristics that made this introductory text a success in prior editions. It is still a book that emphasizes material and energy balances and maintains a practical orientation throughout. No more math is included than is required to understand the concepts presented. To meet the demands of today's market, the author has included many problems suitable for solution by computer. Two brand new chapters are included. The first, on mixing, augments the book's coverage of practical issues encountered in this field. The second, on computational fluid dynamics (CFD), shows students the connection between hand and computational fluid dynamics.