You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Classic monograph treats the irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications of the field with special chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, derivation of the Onsager reciprocal relations, more. 4 black-and-white illustrations.
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynami...
Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.
This book develops in detail the statistical foundations of nonequilibrium thermodynamics, based on the mathematical theory of Brownian motion. Author Bernard H. Lavenda demonstrates that thermodynamic criteria emerge in the limit of small thermal fluctuations and in the Gaussian limit where means and modes of the distribution coincide. His treatment assumes the theory of Brownian motion to be a general and practical model of irreversible processes that are inevitably influenced by random thermal fluctuations. This unifying approach permits the extraction of widely applicable principles from the analysis of specific models. Arranged by argument rather than theory, the text is based on the premises that random thermal fluctuations play a decisive role in governing the evolution of nonequilibrium thermodynamic processes and that they can be viewed as a dynamic superposition of many random events. Intended for nonmathematicians working in the areas of nonequilibrium thermodynamics and statistical mechanics, this book will also be of interest to chemical physicists, condensed matter physicists, and readers in the area of nonlinear optics.
Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager...
The book begins with a brief review of equilibrium systems and transport and rate processes, then covers the following areas: theory of nonequilibrium thermodynamics; dissipation function; entropy and exergy; analysis and case studies on using the second law of thermodynamics; economic impact of the nonequilibrium thermodynamics theory; analysis of transport and rate processes; membrane transport; dissipative structures and biological systems; and other thermodynamic approaches and extended nonequilibrium thermodynamics. Summarizes new applications of thermodynamics as tools for design and optimisation Covers second law and exergy analysis for sustainable development Promotes understanding of the coupled phenomena of natural processes
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and lead to instabilities, fluctuations, and evolutionary systems. This book explores the unifying role of thermodynamics in natural phenomena. Nonequilibrium Thermodynamics, Second Edition analyzes the transport processes of energy, mass, and momentum transfer processes, as well as chemical reactions. It considers various processes occurring simultaneously, and provides students with more realistic analysis and modeling by accounting possible interactions between them. This second edition updates and expands on the first edition by focusing on the ba...
Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, Fourth Edition emphasizes the unifying role of thermodynamics in analyzing natural phenomena. This updated edition expands on the third edition by focusing on the general balance equations for coupled processes of physical, chemical and biological systems. Updates include stochastic approaches, self-organization criticality, ecosystems, mesoscopic thermodynamics, constructual law, quantum thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems. The book also emphasizes nonequilibrium thermodynamics tools, such as fluctuation theories, mesoscop...