You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
On January 8 and 9, 2009, the Ocean Studies Board of the National Research Council, in response to a request from the Office of Naval Research, hosted the "Oceanography in 2025" workshop. The goal of the workshop was to bring together scientists, engineers, and technologists to explore future directions in oceanography, with an emphasis on physical processes. The focus centered on research and technology needs, trends, and barriers that may impact the field of oceanography over the next 16 years, and highlighted specific areas of interest: submesoscale processes, air-sea interactions, basic and applied research, instrumentation and vehicles, ocean infrastructure, and education. To guide the white papers and drive discussions, four questions were posed to participants: What research questions could be answered? What will remain unanswered? What new technologies could be developed? How will research be conducted?
Ocean science connects a global community of scientists in many disciplines - physics, chemistry, biology, geology and geophysics. New observational and computational technologies are transforming the ability of scientists to study the global ocean with a more integrated and dynamic approach. This enhanced understanding of the ocean is becoming ever more important in an economically and geopolitically connected world, and contributes vital information to policy and decision makers charged with addressing societal interests in the ocean. Science provides the knowledge necessary to realize the benefits and manage the risks of the ocean. Comprehensive understanding of the global ocean is fundam...
On January 8 and 9, 2009, the Ocean Studies Board of the National Research Council, in response to a request from the Office of Naval Research, hosted the "Oceanography in 2025" workshop. The goal of the workshop was to bring together scientists, engineers, and technologists to explore future directions in oceanography, with an emphasis on physical processes. The focus centered on research and technology needs, trends, and barriers that may impact the field of oceanography over the next 16 years, and highlighted specific areas of interest: submesoscale processes, air-sea interactions, basic and applied research, instrumentation and vehicles, ocean infrastructure, and education. To guide the white papers and drive discussions, four questions were posed to participants: What research questions could be answered? What will remain unanswered? What new technologies could be developed? How will research be conducted?
This volume reviews the current state of knowledge regarding the effects of low-frequency sound on marine mammals and makes recommendations for research. In addition, the book describes current federal regulations prescribed under the Marine Mammal Protection Act that govern the taking of marine mammals by scientific research activities, and it recommends changes to expedite the regulatory process dealing with scientific research activities.
This book describes the development of ocean sciences over the past 50 years, highlighting the contributions of the National Science Foundation (NSF) to the field's progress. Many of the individuals who participated in the exciting discoveries in biological oceanography, chemical oceanography, physical oceanography, and marine geology and geophysics describe in the book how the discoveries were made possible by combinations of insightful individuals, new technology, and in some cases, serendipity. In addition to describing the advance of ocean science, the book examines the institutional structures and technology that made the advances possible and presents visions of the field's future. This book is the first-ever documentation of the history of NSF's Division of Ocean Sciences, how the structure of the division evolved to its present form, and the individuals who have been responsible for ocean sciences at NSF as "rotators" and career staff over the past 50 years.
What can sharks teach us about our immune system? What can horseshoe crabs show us about eyesight? The more we learn about the ocean, the more we realize how critical these vast bodies of water are to our health and well-being. Sometimes the ocean helps us, as when a marine organism yields a new medical treatment. At other times, the ocean poses the threat of coastal storm surges or toxic algal blooms. From Monsoons to Microbes offers a deeper look into the oceans that surround us, often nurturing yet sometimes harming humankind. This book explores the links among physical oceanography, public health, epidemiology, marine biology, and medicine in understanding what the ocean has to offer. It...
During recent years, large-scale investigations into global climate change and other highly visible issues have taken the lion's share of declining research funds. At the same time, funding for basic research in such core disciplines as physical oceanography, biological oceanography, chemical oceanography, and marine geology has dwindled. Global Ocean Science examines how the largest U.S. ocean research programs, such as the Ocean Drilling Program (ODP) and the Joint Global Ocean Flux Study (JGOFS), have significantly contributed to our understanding of the oceans. The book examines the impact of these programs on research, education, and collegiality within this diverse scientific community...
The ocean is an integral component of the Earth's climate system. It covers about 70% of the Earth's surface and acts as its primary reservoir of heat and carbon, absorbing over 90% of the surplus heat and about 30% of the carbon dioxide associated with human activities, and receiving close to 100% of fresh water lost from land ice. With the accumulation of greenhouse gases in the atmosphere, notably carbon dioxide from fossil fuel combustion, the Earth's climate is now changing more rapidly than at any time since the advent of human societies. Society will increasingly face complex decisions about how to mitigate the adverse impacts of climate change such as droughts, sea-level rise, ocean ...
Environmental information is important for successful planning and execution of naval operations. A thorough understanding of environmental variability greatly increases the likelihood of mission success. To ensure that naval forces have the most up-to-date capabilities, the Office of Naval Research (ONR) has an extensive environmental research program. This research, to be of greatest use to the warfighter, needs to be directed towards assisting and solving battlefield problems. To increase research community understanding of the operational demands placed on naval operators and to facilitate discussion between these two groups, the National Research Council's (NRC) Ocean Studies Board (OSB...
Through direct exploration of the subseafloor, U.S.-supported scientific ocean drilling programs have significantly contributed to a broad range of scientific accomplishments in Earth science disciplines, shaping understanding of Earth systems and enabling new fields of inquiry. Scientific Ocean Drilling: Accomplishments and Challenges reviews the scientific accomplishments of U.S.-supported scientific ocean drilling over the past four decades. The book evaluates how the programs (Deep Sea Drilling Project [DSDP], 1968-1983, Ocean Drilling Program [ODP], 1984-2003, and Integrated Ocean Drilling Program [IODP], 2003-2013) have shaped understanding of Earth systems and Earth history and assess...