You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Duplicate detection is the task of identifying all groups of records within a data set that represent the same real-world entity, respectively. This task is difficult, because (i) representations might differ slightly, so some similarity measure must be defined to compare pairs of records and (ii) data sets might have a high volume making a pair-wise comparison of all records infeasible. To tackle the second problem, many algorithms have been suggested that partition the data set and compare all record pairs only within each partition. One well-known such approach is the Sorted Neighborhood Method (SNM), which sorts the data according to some key and then advances a window over the data comp...
One of the key challenges in service-oriented systems engineering is the prediction and assurance of non-functional properties, such as the reliability and the availability of composite interorganizational services. Such systems are often characterized by a variety of inherent uncertainties, which must be addressed in the modeling and the analysis approach. The different relevant types of uncertainties can be categorized into (1) epistemic uncertainties due to incomplete knowledge and (2) randomization as explicitly used in protocols or as a result of physical processes. In this report, we study a probabilistic timed model which allows us to quantitatively reason about nonfunctional properti...
Unique column combinations of a relational database table are sets of columns that contain only unique values. Discovering such combinations is a fundamental research problem and has many different data management and knowledge discovery applications. Existing discovery algorithms are either brute force or have a high memory load and can thus be applied only to small datasets or samples. In this paper, the wellknown GORDIAN algorithm and "Apriori-based" algorithms are compared and analyzed for further optimization. We greatly improve the Apriori algorithms through efficient candidate generation and statistics-based pruning methods. A hybrid solution HCAGORDIAN combines the advantages of GORDIAN and our new algorithm HCA, and it significantly outperforms all previous work in many situations.
Entity Resolution (ER) lies at the core of data integration and cleaning and, thus, a bulk of the research examines ways for improving its effectiveness and time efficiency. The initial ER methods primarily target Veracity in the context of structured (relational) data that are described by a schema of well-known quality and meaning. To achieve high effectiveness, they leverage schema, expert, and/or external knowledge. Part of these methods are extended to address Volume, processing large datasets through multi-core or massive parallelization approaches, such as the MapReduce paradigm. However, these early schema-based approaches are inapplicable to Web Data, which abound in voluminous, noi...
The development of self-adaptive software requires the engineering of an adaptation engine that controls and adapts the underlying adaptable software by means of feedback loops. The adaptation engine often describes the adaptation by using runtime models representing relevant aspects of the adaptable software and particular activities such as analysis and planning that operate on these runtime models. To systematically address the interplay between runtime models and adaptation activities in adaptation engines, runtime megamodels have been proposed for self-adaptive software. A runtime megamodel is a specific runtime model whose elements are runtime models and adaptation activities. Thus, a ...
Version Control Systems (VCS) allow developers to manage changes to software artifacts. Developers interact with VCSs through a variety of client programs, such as graphical front-ends or command line tools. It is desirable to use the same version control client program against different VCSs. Unfortunately, no established abstraction over VCS concepts exists. Instead, VCS client programs implement ad-hoc solutions to support interaction with multiple VCSs. This thesis presents Pur, an abstraction over version control concepts that allows building rich client programs that can interact with multiple VCSs. We provide an implementation of this abstraction and validate it by implementing a client application.
Data dependencies, or integrity constraints, are used to improve the quality of a database schema, to optimize queries, and to ensure consistency in a database. In the last years conditional dependencies have been introduced to analyze and improve data quality. In short, a conditional dependency is a dependency with a limited scope defined by conditions over one or more attributes. Only the matching part of the instance must adhere to the dependency. In this paper we focus on conditional inclusion dependencies (CINDs). We generalize the definition of CINDs, distinguishing covering and completeness conditions. We present a new use case for such CINDs showing their value for solving complex data quality tasks. Further, we define quality measures for conditions inspired by precision and recall. We propose efficient algorithms that identify covering and completeness conditions conforming to given quality thresholds. Our algorithms choose not only the condition values but also the condition attributes automatically. Finally, we show that our approach efficiently provides meaningful and helpful results for our use case.
Program behavior that relies on contextual information, such as physical location or network accessibility, is common in today's applications, yet its representation is not sufficiently supported by programming languages. With context-oriented programming (COP), such context-dependent behavioral variations can be explicitly modularized and dynamically activated. In general, COP could be used to manage any context-specific behavior. However, its contemporary realizations limit the control of dynamic adaptation. This, in turn, limits the interaction of COP's adaptation mechanisms with widely used architectures, such as event-based, mobile, and distributed programming. The JCop programming lang...
Extract-Transform-Load (ETL) tools are used for the creation, maintenance, and evolution of data warehouses, data marts, and operational data stores. ETL workflows populate those systems with data from various data sources by specifying and executing a DAG of transformations. Over time, hundreds of individual workflows evolve as new sources and new requirements are integrated into the system. The maintenance and evolution of large-scale ETL systems requires much time and manual effort. A key problem is to understand the meaning of unfamiliar attribute labels in source and target databases and ETL transformations. Hard-to-understand attribute labels lead to frustration and time spent to devel...