You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Offers students a practical knowledge of modern techniques in scientific computing.
Describes basic models and physically-based computational solution strategies for simulating flowing particulate media.
Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition,...
Parallel computing has been the enabling technology of high-end machines for many years. Now, it has finally become the ubiquitous key to the efficient use of any kind of multi-processor computer architecture, from smart phones, tablets, embedded systems and cloud computing up to exascale computers. _x000D_ This book presents the proceedings of ParCo2013 – the latest edition of the biennial International Conference on Parallel Computing – held from 10 to 13 September 2013, in Garching, Germany. The conference focused on several key parallel computing areas. Themes included parallel programming models for multi- and manycore CPUs, GPUs, FPGAs and heterogeneous platforms, the performance e...
Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, linear algebra, and optimization. The author presents significant concepts never before discussed as well as new advances in the theory, providing an in-depth initiation to the field of compressed sensing. An Introduction to Compressed Sensing contains substantial material on graph theory and the design of binary measurement matrices, which is missi...
Develops, analyses, and applies numerical methods for evolutionary, or time-dependent, differential problems.
As the magazine of the Texas Exes, The Alcalde has united alumni and friends of The University of Texas at Austin for nearly 100 years. The Alcalde serves as an intellectual crossroads where UT's luminaries - artists, engineers, executives, musicians, attorneys, journalists, lawmakers, and professors among them - meet bimonthly to exchange ideas. Its pages also offer a place for Texas Exes to swap stories and share memories of Austin and their alma mater. The magazine's unique name is Spanish for "mayor" or "chief magistrate"; the nickname of the governor who signed UT into existence was "The Old Alcalde."
“This book combines an updated look, at an advanced level, of the mathematical theory of the finite element method (including some important recent developments), and a presentation of many of the standard iterative methods for the numerical solution of the linear system of equations that results from finite element discretization, including saddle point problems arising from mixed finite element approximation. For the reader with some prior background in the subject, this text clarifies the importance of the essential ideas and provides a deeper understanding of how the basic concepts fit together.” — Richard S. Falk, Rutgers University “Students of applied mathematics, engineering,...
Uncertainty quantification serves a fundamental role when establishing the predictive capabilities of simulation models. This book provides a comprehensive and unified treatment of the mathematical, statistical, and computational theory and methods employed to quantify uncertainties associated with models from a wide range of applications. Expanded and reorganized, the second edition includes advances in the field and provides a comprehensive sensitivity analysis and uncertainty quantification framework for models from science and engineering. It contains new chapters on random field representations, observation models, parameter identifiability and influence, active subspace analysis, and s...