You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly ...
This book presents the select proceedings of the 48th National Conference on Fluid Mechanics and Fluid Power (FMFP 2021) held at BITS Pilani in December 2021. It covers the topics such as fluid mechanics, measurement techniques in fluid flows, computational fluid dynamics, instability, transition and turbulence, fluid‐structure interaction, multiphase flows, micro- and nanoscale transport, bio-fluid mechanics, aerodynamics, turbomachinery, propulsion and power. The book will be useful for researchers and professionals interested in the broad field of mechanics.
This book introduces the latest research in molecular, cellular, and tissue engineering of the vascular system. Topics covered include the roles of endothelial surface glycocalyx as a mechano-sensor and transducer for blood flow, a barrier to water and solute transport across the vascular wall and to the interaction between circulating cells and the vessel wall, the roles of nuclear envelope proteins and nuclear lamina in regulating vascular functions under blood flow-induced forces, and the roles of smooth muscle cells and extracellular components in arterial vasoconstriction. Other topics covered include non-surgical vascular interventions for coronary artery diseases, genesis and mechanis...
Offers an introduction to the topics in interfacial phenomena, colloid science or nanoscience. Designed as a pedagogical tool, this book recognizes the cross-disciplinary nature of the subject. It features descriptions of experiments and contains figures and illustrations that enhance the understanding of concepts.
This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's alg...
Traditionally, fluid mixing and the related multiphase contacting processes have always been regarded as an empirical technology. Many aspects of mixing, dispersing and contacting were related to power draw, but understanding of the phenomena was limited or qualitative at the most. In particular during the last decade, however, plant operation targets have tightened and product specifications have become stricter. The public awareness as to safety and environmental hygiene has increased. The drive towards larger degrees of sustainability in the process industries has urged for lower amounts of solvents and for higher yields and higher selectivities in chemical reactors. All this has resulted...
The basics of computer algebra and the language of Mathematica are described in this textbook, leading towards an understanding of Mathematica that allows the reader to solve problems in physics, mathematics, and chemistry. Mathematica is the most widely used system for doing mathematical calculations by computer, including symbolic and numeric calculations and graphics. It is used in physics and other branches of science, in mathematics, education and many other areas.
This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. The first part of the book discusses the basic numerical methods. The second part concentrates on simulation of classical and quantum systems. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multi-step methods and the class of Verlet methods, which is introduced by studying the motion in Liouville space. A general chapter on the numerical treatment of differential equations provides methods of finite differences, finite volumes, finite elements and boundary elements together with spectral methods and weighted residual based methods. The book gives simple but non trivial examples from a broad range of physical topics trying to give the reader insight into not only the numerical treatment but also simulated problems. Different methods are compared with regard to their stability and efficiency. The exercises in the book are realised as computer experiments.
This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomena both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with abso...
Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses. Erratum for the book can be found at michel.talagrand.net/erratum.pdf.