You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents articles originating from invited talks at an exciting international conference held at The Fields Institute in Toronto celebrating the sixtieth birthday of the renowned mathematician, Vladimir Arnold. Experts from the world over--including several from "Arnold's school"--gave illuminating talks and lively poster sessions. The presentations focused on Arnold's main areas of interest: singularity theory, the theory of curves, symmetry groups, dynamical systems, mechanics, and related areas of mathematics. The book begins with notes of three lectures by V. Arnold given in the framework of the Institute's Distinguished Lecturer program. The topics of the lectures are: (1) From Hilbert's Superposition Problem to Dynamical Systems (2) Symplectization, Complexification, and Mathematical Trinities (3) Topological Problems in Wave Propagation Theory and Topological Economy Principle in Algebraic Geometry. Arnold's three articles include insightful comments on Russian and Western mathematics and science. Complementing the first is Jurgen Moser's "Recollections", concerning some of the history of KAM theory.
The boundaries of singularity theory are broad and vague, connecting the most important applications of mathematics and science with more abstract areas. Optics, robotics, computer vision, Hamiltonian mechanics, bifurcation theory and differential equations are among the variety of topics that benefit from developments in the theory. With singularity theory encompassing more and more applications, Real and Complex Singularities provides insight into the future of this expanding field. Comprising refereed contributions to the Fifth Workshop on Real and Complex Singularities, this volume addresses three important areas related to the broad subject of singularities. The first section deals with...
A novel explanation for why politicians insult, accuse, and threaten their opponents, even though voters say they don't like it. Why do politicians engage in nasty politics? Why do they use insult, accusations, intimidation, and in rare cases violence against their domestic political opponents? In Nasty Politics, Thomas Zeitzoff answers these questions by examining this global political trend in the US, Ukraine, and Israel and looking at how key leaders such as Trump, Zelensky, and Netanyahu use it. Drawing on surveys, case studies, in-depth interviews, databases of nasty politics, and large social media datasets, Zeitzoff shows that across all three countries, the public generally doesn't like nasty politics and it increases the threat of political violence. But it can also be a way to signal toughness to voters, which is especially important in threatening times. Featuring a powerful theory of why nastiness takes hold in democratic polities, Nasty Politics highlights how it influences the kinds of politicians who run for office and deepens our understanding for why so many politicians now rely on outsized anger and withering insults for political gain.
The Workshop on Real and Complex Singularities is held every other year at the Instituto de Ciencias Matematicas e de Computacao (Sao Carlos, Brazil) and brings together specialists in the vanguard of singularities and its applications. This volume contains articles contributed by participants of the seventh workshop.
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.
Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.
Translated from the Russian by E.J.F. Primrose "Remarkable little book." -SIAM REVIEW V.I. Arnold, who is renowned for his lively style, retraces the beginnings of mathematical analysis and theoretical physics in the works (and the intrigues!) of the great scientists of the 17th century. Some of Huygens' and Newton's ideas. several centuries ahead of their time, were developed only recently. The author follows the link between their inception and the breakthroughs in contemporary mathematics and physics. The book provides present-day generalizations of Newton's theorems on the elliptical shape of orbits and on the transcendence of abelian integrals; it offers a brief review of the theory of regular and chaotic movement in celestial mechanics, including the problem of ports in the distribution of smaller planets and a discussion of the structure of planetary rings.
The Singularity School and Conference took place in Luminy, Marseille, from January 24th to February 25th 2005. More than 180 mathematicians from over 30 countries converged to discuss recent developments in singularity theory.The volume contains the elementary and advanced courses conducted by singularities specialists during the conference, general lectures on singularity theory, and lectures on applications of the theory to various domains. The subjects range from geometry and topology of singularities, through real and complex singularities, to applications of singularities.
The Singularity School and Conference took place in Luminy, Marseille, from January 24th to February 25th 2005. More than 180 mathematicians from over 30 countries converged to discuss recent developments in singularity theory.The volume contains the elementary and advanced courses conducted by singularities specialists during the conference, general lectures on singularity theory, and lectures on applications of the theory to various domains. The subjects range from geometry and topology of singularities, through real and complex singularities, to applications of singularities.
The new edition of this non-mathematical review of catastrophe theory contains updated results and many new or expanded topics including delayed loss of stability, shock waves, and interior scattering. Three new sections offer the history of singularity and its applications from da Vinci to today, a discussion of perestroika in terms of the theory of metamorphosis, and a list of 93 problems touching on most of the subject matter in the book.