You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Application of Mathematics to the Natural Sciences brings together scientists and historians of science to discuss how, in an increasingly interdisciplinary manner, mathematics and mathematical models are used in the natural sciences.
Noncovalent interactions play key roles in many natural processes leading to the self-assembly of molecules with the formation of supramolecular structures. One of the most important forces responsible for self-assembly is hydrogen bonding, which also plays an important role in the self-assembly of synthetic polymers in aqueous solutions. Proton-accepting polymers can associate with proton-donating polymers via hydrogen bonding in aqueous solutions and form polymerndash;polymer or interpolymer complexes. There has been an increased interest among researchers in hydrogen-bonded interpolymer complexes since the first pioneering papers were published in the early 1960s. Several hundred research...
Determinism, holism and complexity: three epistemological attitudes that have easily identifiable historical origins and developments. Galileo believed that it was necessary to "prune the impediments" to extract the mathematical essence of physical phenomena, to identify the math ematical structures representing the underlying laws. This Galilean method was the key element in the development of Physics, with its extraordinary successes. Nevertheless the method was later criticized because it led to a view of nature as essentially "simple and orderly", and thus by choosing not to investigate several charac teristics considered as an "impediment", several essential aspects of the phenomenon un...
This book illustrates applications of mathematics to various processes (physiological or artificial) involving flowing blood, including hemorheology, microcirculation, coagulation, kidney filtration and dialysis, offering a historical overview of each topic. Mathematical models are used to simulate processes normally occurring in flowing blood and to predict the effects of dysfunctions (e.g. bleeding disorders, renal failure), as well as the effects of therapies with an eye to improving treatments. Most of the models have a completely new approach that makes patient-specific simulations possible. The book is mainly intended for mathematicians interested in medical applications, but it is also useful for clinicians such as hematologists, nephrologists, cardio-surgeons, and bioengineers. Some parts require no specific knowledge of mathematics. The book is a valuable addition to mathematics, medical, biology, and bioengineering libraries.
The editors, Lund (emeritus, organic chemistry, Aarhus U., Denmark) and Hammerich (chemistry, U. of Copenhagen), have substantially revised and expanded this basic reference work (originally edited by Bazier). There are two new chapters--on the electrochemistry of C60 compounds and electroenzymatic synthesis--and one-third of the chapters have been rewritten by new authors, these are: carbonyl compounds; anodic oxidation of oxygen-containing compounds; anodic oxidation of sulfur- and selenium-containing compounds; electrosynthesis of bioactive materials (this replaces natural products and pharmaceuticals); organoelemental compounds; reductive coupling; electrochemical partial fluorination; electrogenerated bases; industrial electroorganic chemistry; and conducting polymers. The international group of contributors are all academics in various disciplines in chemistry. Annotation copyrighted by Book News, Inc., Portland, OR
A relatively compact, but nonetheless comprehensive, review of the most important preparative methods for the synthesis and chemical modification of polymers. The contents are subdivided according to chemical structure of the polymer backbone. Complementary emphasis is on special properties and appl
The Selected Papers in this volume, written over a period of some 20 years, represent just a small part of Marco Biagi's scientific writings, and are reprinted here with a view to showing the range, depth and originality of his research work. While many of his papers dealing with labour relations issues in the Italian context were published in Italian, Marco's long association with Johns Hopkins University and Dickinson College, along with his close links with the leading scholars in comparative labour law and industrial relations not just in the member states of the European Union, but also in many other countries, including Japan, were of fundamental importance for his work, and as a resul...
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliograph...
With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive e...