You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nanocomposites have been receiving more and more attention given the improvement of synthesis techniques and the availability of powerful characterization techniques. The aim of the book is to introduce nanocomposite materials using a broad range of inorganic and organic solids. It also presents recent and not very common developments in especially spectroscopic characterization techniques, including Mössbauer, EXAFS, NMR. This should make the book attractive for a broad range of readers, including chemists and physicists.
This book presents an overview of the latest Mössbauer spectroscopy research. It sheds light on various cutting-edge research subjects: (i) nuclear resonance scattering experiments implemented at synchrotron radiation facilities, e.g., ESRF, DESY and Spring-8; (ii) multidisciplinary materials research related to chemistry, biology, geoscience, molecular magnetism of metal complexes, batteries, and magnetism; (iii) novel imaging techniques based on probing diffusion in solids using Mössbauer spectroscopy. The first three chapters introduce recent research on modern Mössbauer spectroscopy, including nuclear resonant scattering experiments and development of related techniques at synchrotron...
The “Rudolf Mössbauer Story” recounts the history of the discovery of the “Mössbauer Effect” in 1958 by Rudolf Mössbauer as a graduate student of Heinz Maier-Leibnitz for which he received the Nobel Prize in 1961 when he was 32 years old. The development of numerous applications of the Mössbauer Effect in many fields of sciences , such as physics, chemistry, biology and medicine is reviewed by experts who contributed to this wide spread research. In 1978 Mössbauer focused his research interest on a new field “Neutrino Oscillations” and later on the study of the properties of the neutrinos emitted by the sun.
Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Applications of Nuclear Magnetic Resonance (NMR) span a wide range of scientific disciplines, including physis, biology and medicine. Each volume in this series comprises a combination of reports offering a comprehensive coverage of the literature. With an unrivalled scope of coverage, this Specialist Periodical Report presents an invaluable source of current methods and applications for seasoned practitioners and newcomers alike.
With this handbook the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. The authors cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as: · quantum dots, nanoparticles, nanoporous materials, as well as nanowires, nanotubes and nanostructural polymers · nanocatalysis, nanolithography, nanomanipulation · methods for the synthesis of nanoparticles. The book can thus be recommended for everybody working in nanoscience: Beginners can acquaint themselves with the exciting subject, while specialists will find answers to all their questions plus helpful suggestions for further research.
In this collection, the author has compiled a set of his papers representing some of the highlights of materials chemistry. It features a section on oxidic materials, which includes high-temperature superconductivity, colossal magnetoresistance, electronic phase separation and multiferroics. The author has also included novel methods for making gallium nitride, boron nitride and such materials, by using precursors and the urea decomposition route. Moreover, there is a section dealing with open-framework and hybrid materials of which the latter has a great future since one can make use of the rigidity of inorganic structures and the functionality and flexibility of the organic residues to design materials with novel properties.
This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, t...
Intelligent Nanomaterials comprehensively provides up-to-date material of this fascinating field. The last three decades have seen extraordinary advances in the generation of new materials based on both fundamental elements and composites, driven by advances in synthetic chemistry and often drawing inspiration from nature. The concept of an intelligent material envisions additional functionality built into the molecular structure, such that a desirable response occurs under defined conditions. Divided into 4 parts: Inorganic Materials; Organic Materials; Composite Materials; and Biomaterials, the 22 chapters cover the latest research and developments in the processing, properties, and applications of intelligent nanomaterials. Included are molecular device materials, biomimetic materials, hybrid-type functionalized polymers-composite materials, information-and energy-transfer materials, as well as environmentally friendly materials.