You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Vortex dynamics is a natural paradigm for the field of chaotic motion and modern dynamical system theory. However, this volume focuses on those aspects of fluid motion that are primarily controlled by the vorticity and are such that the effects of the other fluid properties are secondary.
Turbulence is the lIDst natural nDde of fluid lIDtion, and has been the subject of scientific study for all Dst a century. During this period, various ideas and techniques have evolved to nDdel turbulence. Following Saffman, these theoretical approaches can be broadly divided into four overlapping categories -- (1) analytical lIDdelling, (2) physical lIDdelling, (3) phenomenologicalllDdelling, and (4) nurerical lIDdelling. With the purpose of stmtnarizing our =ent understanding of these theoretical approaches to turbulence, recognized leaders (fluid dynamicists, mathematicians and physicists) in the field were invited to participate in a formal workshop during October 10-12, 1984, sponsored ...
Structures in Nature are ubiquitous and fascinating. In natural and mathematical systems nonlinear structures, roughly speaking, are those resulting from nonlinear equations, the investigation of which forms a large and integral part of the new branch of science-the nonlinear science. Like nonlinear science in general, non linear structures is a truly interdisciplinary subject which involves physicists, chemists, biologists, material scientists, mathematicians, engineers, etc. In view of the recent rapid developments in this subject and the existence of a converging picture which acts to unify some of the previously considered separate subfields of research, we think it is time to bring together various experts to exchange ideas and share their newest findings. The Second Woodward Confer ence afforded us a chance to do exactly this. Accordingly, this second conference in the series was devoted to the subject of Nonlinear Structures in Physical Sys tems: Pattern Formation, Chaos and Waves, and was held at San Jose State Uni versity on November 17-18, 1989.
Growth and Fonn is the title of a famous book written by D' Arcy Thomson at the beginning of the century. It relates a large number of problems of shapes of bodies either in the physical world or the biological realm. Keywords in this field are shapes, spirals, growth law, gravity field, surface tension, scaling laws, diffusion and mechanical efficiency. This field is the source of a considerable amount of work, even today, and this conference was a place where some of this work was discussed. Except for a few contributions with biophysical inspiration, the main part of the conference was devoted to physical problems related to growth and fonn and especially to the problem of the motion of i...
In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.
This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such "fully developed turbulence" is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system. Kolmogorov's 1941 theory is presented in a novel fashion with emphasis on symmetries...
Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.
This book demonstrates scientific computing by presenting twelve computational projects in several disciplines including Fluid Mechanics, Thermal Science, Computer Aided Design, Signal Processing and more. Each follows typical steps of scientific computing, from physical and mathematical description, to numerical formulation and programming and critical discussion of results. The text teaches practical methods not usually available in basic textbooks: numerical checking of accuracy, choice of boundary conditions, effective solving of linear systems, comparison to exact solutions and more. The final section of each project contains the solutions to proposed exercises and guides the reader in using the MATLAB scripts available online.
This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.