You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides the most comprehensive treatment to date of microeconometrics, the analysis of individual-level data on the economic behavior of individuals or firms using regression methods for cross section and panel data. The book is oriented to the practitioner. A basic understanding of the linear regression model with matrix algebra is assumed. The text can be used for a microeconometrics course, typically a second-year economics PhD course; for data-oriented applied microeconometrics field courses; and as a reference work for graduate students and applied researchers who wish to fill in gaps in their toolkit. Distinguishing features of the book include emphasis on nonlinear models and robust inference, simulation-based estimation, and problems of complex survey data. The book makes frequent use of numerical examples based on generated data to illustrate the key models and methods. More substantially, it systematically integrates into the text empirical illustrations based on seven large and exceptionally rich data sets.
This book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events.
Students in both social and natural sciences often seek regression methods to explain the frequency of events, such as visits to a doctor, auto accidents, or new patents awarded. This book, now in its second edition, provides the most comprehensive and up-to-date account of models and methods to interpret such data. The authors combine theory and practice to make sophisticated methods of analysis accessible to researchers and practitioners working with widely different types of data and software in areas such as applied statistics, econometrics, marketing, operations research, actuarial studies, demography, biostatistics and quantitative social sciences. The new material includes new theoretical topics, an updated and expanded treatment of cross-section models, coverage of bootstrap-based and simulation-based inference, expanded treatment of time series, multivariate and panel data, expanded treatment of endogenous regressors, coverage of quantile count regression, and a new chapter on Bayesian methods.
Copula Modeling explores the copula approach for econometrics modeling of joint parametric distributions. Copula Modeling demonstrates that practical implementation and estimation is relatively straightforward despite the complexity of its theoretical foundations. An attractive feature of parametrically specific copulas is that estimation and inference are based on standard maximum likelihood procedures. Thus, copulas can be estimated using desktop econometric software. This offers a substantial advantage of copulas over recently proposed simulation-based approaches to joint modeling. Copulas are useful in a variety of modeling situations including financial markets, actuarial science, and microeconometrics modeling. Copula Modeling provides practitioners and scholars with a useful guide to copula modeling with a focus on estimation and misspecification. The authors cover important theoretical foundations. Throughout, the authors use Monte Carlo experiments and simulations to demonstrate copula properties
A complete and up-to-date survey of microeconometric methods available in Stata, Microeconometrics Using Stata, Revised Edition is an outstanding introduction to microeconometrics and how to execute microeconometric research using Stata. It covers topics left out of most microeconometrics textbooks and omitted from basic introductions to Stata. This revised edition has been updated to reflect the new features available in Stata 11 that are useful to microeconomists. Instead of using mfx and the user-written margeff commands, the authors employ the new margins command, emphasizing both marginal effects at the means and average marginal effects. They also replace the xi command with factor var...
Handbook of Empirical Economics and Finance explores the latest developments in the analysis and modeling of economic and financial data. Well-recognized econometric experts discuss the rapidly growing research in economics and finance and offer insight on the future direction of these fields. Focusing on micro models, the first group of chapters describes the statistical issues involved in the analysis of econometric models with cross-sectional data often arising in microeconomics. The book then illustrates time series models that are extensively used in empirical macroeconomics and finance. The last set of chapters explores the types of panel data and spatial models that are becoming increasingly significant in analyzing complex economic behavior and policy evaluations. This handbook brings together both background material and new methodological and applied results that are extremely important to the current and future frontiers in empirical economics and finance. It emphasizes inferential issues that transpire in the analysis of cross-sectional, time series, and panel data-based empirical models in economics, finance, and related disciplines.
Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.
This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic econometric models and methods. Because most data are observational, practitioners work with indirect noisy observations and ill-posed econometric models in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of power divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-model problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family.
Recommended by Bill Gates and included in GatesNotes "Elaborating on the science as well as the business behind the fight against cystic fibrosis, Trivedi captures the emotions of the families, doctors, and scientists involved in the clinical trials and their 'weeping with joy' as new drugs are approved, and shows how cystic fibrosis, once a 'death sentence,' became, for many, a manageable condition. This is a rewarding and challenging work." —Publishers Weekly Cystic fibrosis was once a mysterious disease that killed infants and children. Now it could be the key to healing millions with genetic diseases of every type—from Alzheimer's and Parkinson's to diabetes and sickle cell anemia. I...
ÔThe Elgar Companion to Health Economics is a comprehensive and accessible look at the field, as seen by its leading figures.Õ Ð Joseph Newhouse, Harvard Medical School, US Acclaim for the first edition: ÔThis Companion is a timely addition. . . It contains 50 chapters, from 90 contributors around the world, on the topical and policy-relevant aspects of health economics. . . there is a balanced coverage of theoretical and empirical materials, and conceptual and practical issues. . . I have found the Companion very useful.Õ Ð Sukhan Jackson, Economic Analysis and Policy ÔThis encyclopedic work provides interested readers with an authoritative and comprehensive overview of many, if not ...