You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
A 30-article volume, introducing an active and attractive part of algebra that has gained much from its position at the crossroads of mathematics over the years. The papers stimulate the reader to consider and actively investigate the topics and problems they contain.
This is a book on numerical methods for singular perturbation problems – in part- ular, stationary reaction-convection-diffusion problems exhibiting layer behaviour. More precisely, it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. Numerical methods for singularly perturbed differential equations have been studied since the early 1970s and the research frontier has been constantly - panding since. A comprehensive exposition of the state of the art in the analysis of numerical methods for singular perturbation problems is [141] which was p- lished in 2008. As that monograph covers a big variety of numerical methods, it only contains a...
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form...
This volume offers a thorough study of symmetric algebras, covering topics such as block theory, representation theory and Clifford theory. It can also serve as an introduction to the Hecke algebras of complex reflection groups.
This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.
Stable Lévy processes and related stochastic processes play an important role in stochastic modelling in applied sciences, in particular in financial mathematics. This book is about the potential theory of stable stochastic processes. It also deals with related topics, such as the subordinate Brownian motions (including the relativistic process) and Feynman–Kac semigroups generated by certain Schrödinger operators. The authors focus on classes of stable and related processes that contain the Brownian motion as a special case. This is the first book devoted to the probabilistic potential theory of stable stochastic processes, and, from the analytical point of view, of the fractional Lapla...
Mathematical and philosophical thought about continuity has changed considerably over the ages, from Aristotle's insistence that a continuum is a unified whole, to the dominant account today, that a continuum is composed of infinitely many points. This book explores the key ideas and debates concerning continuity over more than 2500 years.
This book offers an introduction to rough paths. Coverage also includes the interface between analysis and probability to special processes, Lévy processes and Lévy systems, representation of Gaussian processes, filtrations and quantum probability.