You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
As the growing number of conference proceedings, preprints, periodicals and popular journal articles are being joined by various electronic forms of dissemination of research, the series Progress in Low Temperature Physics assumes a particular responsibility in providing excellent reviews, guiding the reading of the literature and providing direction for future research possibilities. In this most recent volume, the main theme is research on superfluid and adsorbed phases of helium.In five chapters the following topics are dealt with. Chapter one is a review of one of the essential characteristics of superfluid 4He, the Landau critical velocity. Chapter two reviews the amazing properties of coherent spin dynamics in superfluid 3He. The next chapter examines a unique situation with a number of thermodynamic transitions between superfluid states and discusses the current experimental and theoretical situation. Properties of phases of 3He adsorbed on graphite are discussed in the following chapter, and in a complementary final chapter a review is presented on the properties of multilayer 3He-4He mixture films.
Significant advances have occurred in the field since the previous edition, including advances in light squeezing, single photon optics, phase conjugation, and laser technology. The laser is essentially responsible for nonlinear effects and is extensively used in all branches of science, industry, and medicine.
The volume that you have before you is the result of a growing realization that fluctuations in nonequilibrium systems playa much more important role than was 1 first believed. It has become clear that in nonequilibrium systems noise plays an active, one might even say a creative, role in processes involving self-organization, pattern formation, and coherence, as well as in biological information processing, energy transduction, and functionality. Now is not the time for a comprehensive summary of these new ideas, and I am certainly not the person to attempt such a thing. Rather, this short introductory essay (and the book as a whole) is an attempt to describe where we are at present and how...
This work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. Mat Lab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications.
Contains both an exhaustive introduction to the subject as well as a detailed discussion of fundamental problems and research results. Despite the unified presentation of the subject, care has been taken to present the material in largely self-contained chapters.
The study of quantum fluids in three dimensions has been an important area for many years as it embraces Bose-Einstein condensation, superfluidity and macroscopic quantisation. These are fundamental aspects of physics which can be studied in liquid 4He. In contrast, quantum fluids in two dimension is more recent and less developed. Nevertheless it has shown many interesting phenomena including a rich variety of phases and the Kosterlitz-Thouless transition. Intermediate between these dimensions are the restricted geometries of micro porous materials into which He may be introduced. The main quantum materials considered are 4He, 3He, D2, H2, H and electrons on the surface of 4He. The superflu...
The properties of the harmonic oscillator with random frequency or/and random damping formed the content of the first edition. The second edition includes hundreds of publications on this subject since 2005. The noisy oscillator continues to be the subject of intensive studies in physics, chemistry, biology, and social sciences.The new and the latest type of a stochastic oscillator has also been considered, namely, an oscillator with random mass. Such model describes, among other phenomena, Brownian motion with adhesion, where the molecules of the surrounding medium not only randomly collide, but also stick to the Brownian particle for some (random) time, thereby changing its mass. This edition contains two new chapters, eight new sections and an expanded bibliography. A wide group of researchers, students and teachers will benefit from this book.
Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.
The conceptofspontaneous symmetry breaking plays a fundamental role in contemporary physics. It is essential for the description of degenerate ground states, massless modes, and topological defects. Examples are abundant in condensed matter physics, atomic and particle physics, as well as in astro physics and cosmology. In fact, spontaneous symmetry breaking can be re garded as a cornerstone ofa whole branch ofphysics which intersects the above mentioned traditionally distinct fields. In the year 2000 the European Science Foundation (ESF) started the Pro gramme "Cosmology in the Laboratory" (COSLAB), with the goal to search for and to develop analogies betweencondensed matterphysics, particl...
Ocean structures, including ships, boats, piers, docks, rigs and platforms, are subject to fair weather wind and waves, as well as violent storms. A scientific analysis of these structures, under varying conditions, requires a mix of civil engineering, physics and applied mathematics. Chapters by experts in these fields are presented which explore the nonlinear responses of ocean structures to stochastic forcing. Theoretical methods calculate aspects of time, frequency and phase space responses. Probabilities governed by stochastic differential equations arc investigated directly or through moment correlations, such as power spectra. Calculations can also involve level crossing statistics and first passage times. Tiffs book will help scientists study stochastic nonlinear equations and help engineers design for short term survivability of structures in storms and long life in the face of everyday fatigue.