You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
To produce energy, aerobic organisms transform oxygen molecules into water. This reductive mechanism yields toxic radical intermediates, collectively known as reactive oxygen species (ROS). Paradoxically, these physiological processes entail the production of potentially damaging species. Evolution has turned this apparent disadvantage into an opportunity for transmitting information. As a result, redox signaling within the cell is an efficient exquisitely organized process. A key element for its regulation is the physical separation of sources and targets into different cell compartments. Peroxiporins, H2O2 transporting proteins spanning biological membranes, distribute the signal from emit...
In multicellular organisms, states with a high degree of tissue turnover like embryogenesis, development, and adult tissue homeostasis need an instantaneous, tightly regulated and immunologically silent clearance of these dying cells to ensure appropriate development of the embryo and adult tissue remodelling. The proper and swift clearance of apoptotic cells is essential to prevent cellular leakage of damage associated molecular patterns (DAMPs) which would lead to the stimulation of inflammatory cytokine responses. In addition to the clearance of apoptotic cells (efferocytosis), backup mechanisms are required to cope with DAMPs (HMGB-1, DNA, RNA, S100 molecules, ATP and adenosine) and othe...
Macrophages were initially identified as a key element in the innate host response to infection and injury due to their phagocytic clearance and elimination of pathogenic and non-pathogenic entities. However, as macrophage research advanced it became clear that not only are these cells amenable to the acquisition of multiple plastic phenotypes during inflammatory responses to different pathogens, they also play a paramount role in the termination of inflammation and acquired immune responses. In addition, macrophages profoundly affect host physiology when they migrate to distant sites and differentiate to specialized cells, like foam cells, osteoclasts, adipose tissue- and tumor -associated ...
After decades of intensive research and over 10,000 publications, preterm birth remains a major global obstetric healthcare problem. Each year, early birth is responsible for the deaths of more than one million infants worldwide and is a major cause of life-long disability. Preterm birth places an enormous financial burden on our healthcare systems, resulting in long-term adverse health outcomes and lost productivity for many people. Preterm birth is a syndrome, associated with several different aetiologies; hence, potential treatment strategies need to be matched to pathophysiology in order to be effective. There is now unequivocal evidence that inflammation is causally involved in a majori...
The inflammasome was first described in 2002 as a molecular complex activating proinflammatory caspases and therefore regulating the maturation and biological activities of cytokines such as IL-1 and IL-18. This finding was substantiated by the identification of several mutations in the cias1 gene, encoding the human NLRP3 protein, responsible for several autoinflammatory disorders such as the Muckle Wells syndrome. Since, the interest for this complex has constantly increased and several inflammasome complexes with different specificities have been described. These inflammasomes sense a wide variety of pathogens and danger signals and are key players in the inflammatory response. With the contributions of leading international experts in the field, this book provides an extensive overview of the current knowledge of inflammasome biology and their role in health and disease.
None
Inflammasome Biology: Fundamentals, Role in Disease States, and Therapeutic Opportunities is a complete reference on the role of inflammasomes in health and disease. Sections cover the different types of inflammasomes, including cellular signaling, structural and evolutive aspects, overview the role of inflammasomes in key diseases, microbial infections and human body systems conditions, cover the interplay between Inflammasomes and cell death processes, and discuss current therapeutic opportunities driven by inflammasome research, including targeting, blocking and inhibiting the development of inflammasomes through both synthetic and natural compounds. This book is the perfect reference for cell biologists, immunologists and research clinicians to understand the foundations of inflammasomes and explore the therapeutic opportunities they present. Pharma researchers may also find this reference invaluable in devising new approaches to developing anti-inflammatory drugs. - Provides comprehensive coverage of the subject of inflammasome biology - Authored by leading experts worldwide - Provides biological insights that have both health implications and therapeutic potential