You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The sensing, processing, and visualizing that are currently in development within the environment boldly change the ways design and maintenance of landscapes are perceived and conceptualised. This is the first book to rationalize interactive architecture and responsive technologies through the lens of contemporary landscape architectural theory. Responsive Landscapes frames a comprehensive view of design projects using responsive technologies and their relationship to landscape and environmental space. Divided into six insightful sections, the book frames the projects through the terms; elucidate, compress, displace, connect, ambient, and modify to present and construct a pragmatic framework in which to approach the integration of responsive technologies into landscape architecture. Complete with international case studies, the book explores the various approaches taken to utilise responsive technologies in current professional practice. This will serve as a reference for professionals, and academics looking to push the boundaries of landscape projects and seek inspiration for their design proposals.
This book narrates the development of various biomimetic microelectromechanical systems (MEMS) sensors, such as pressure, flow, acceleration, chemical, and tactile sensors, that are inspired by sensing phenomena that exist in marine life. The research described in this book is multi-faceted and combines the expertise and understanding from diverse fields, including biomimetics, microfabrication, sensor engineering, MEMS design, nanotechnology, and material science. A series of chapters examine the design and fabrication of MEMS sensors that function on piezoresistive, piezoelectric, strain gauge, and chemical sensing principles. By translating nature-based engineering solutions to artificial man-made technology, we can find innovative solutions to critical problems.
This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.
None
Cellular Actuators: Modularity and Variability in Muscle-Inspired Actuation describes the roles actuators play in robotics and their insufficiency in emerging new robotic applications, such as wearable devices and human co-working robots where compactness and compliance are important. Piezoelectric actuators, the topic of this book, provide advantages like displacement scale, force, reliability, and compactness, and rely on material properties to provide displacement and force as reactions to electric stimulation. The authors, renowned researchers in the area, present the fundamentals of muscle-like movement and a system-wide study that includes the design, analysis, and control of biologica...
None
Smart Materials in Additive Manufacturing, Volume Three: 4D-Printed Robotic Materials, Sensors, and Actuators covers the principles, real-world use, and advances in the cutting-edge field of 4D printed smart robotic materials. It discusses the mechanics of these materials, techniques by which to manufacture them, and different applications. Detailed modeling and control techniques are outlined, illustrating their use in real-world settings. Shape memory polymers, hydrogels, shape memory alloys, biomaterials, natural fibers, dielectric elastomers, liquid crystal elastomers, electroactive polymers, and more materials are covered, featuring in-depth discussion of their responses to stimuli, fab...