You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This report assesses the operational performance of explosives-detection equipment and hardened unit-loading devices (HULDs) in airports and compares their operational performance to their laboratory performance, with a focus on improving aviation security.
Protection of the traveling public from terrorist threats involving explosives is a major goal of the Transportation Security Administration (TSA). For 20 years, the TSA (and the Federal Aviation Administration before it) have been investing in technologies to meet that goal. To support that activity, the TSA has asked the NRC to assess a variety of technological opportunities for offering such protection. The NRC is approaching this assignment by issuing a series of reports on chosen technology applications. This is the first of that series and presents an assessment of mass spectrometry for enhanced trace detection (ETD) of chemicals contained in explosives. The report describes limitations of trace detection in general and the current technologies in particular. It then presents a discussion of the potential for mass spectrometry to improve EDT including challenges faced by such a system, recommendations for starting a program to take advantage of mass spectrometry, and recommendations for a phased implementation plan.
Historically, most terrorist attacks on civilian targets have involved the use of firearms or explosives, and current defensive strategies are aimed at preventing attacks perpetrated by such means. However, the use of the nerve agent sarin in 1995 to attack the Tokyo subway system, the use of the U.S. mail in 2001 to distribute letters containing anthrax spores, and the discovery in 2004 of the biological toxin ricin in U.S. Senate Office Buildings in Washington, D.C., demonstrate that chemical and biological agents have been added to terrorists' arsenals. Attacks involving chemical/biological agents are of great concern, not only because of the potential for mass casualties but also because...
Filling a critical gap in aviation engineering literature, this unique and timely resource provides you with a thorough introduction to aviation system security. It enables you to understand the challenges the industry faces and how they are being addressed. You get a complete analysis of the current aviation security standards ARINC 811, ED-127 and the draft SC-216. The book offers you an appreciation for the diverse collection of members within the aviation industry. Moreover, you find a detailed treatment of methods used to design security controls that not only meet individual corporate interests of a stakeholder, but also work towards the holistic securing of the entire industry. This forward-looking volume introduces exiting new areas of aviation security research and techniques for solving today's the most challenging problems, such as security attack identification and response.
This book addresses new technologies being considered by the Federal Aviation Administration (FAA) for screening airport passengers for concealed weapons and explosives. The FAA is supporting the development of promising new technologies that can reveal the presence not only of metal-based weapons as with current screening technologies, but also detect plastic explosives and other non-metallic threat materials and objects, and is concerned that these new technologies may not be appropriate for use in airports for other than technical reasons. This book presents discussion of the health, legal, and public acceptance issues that are likely to be raised regarding implementation of improvements in the current electromagnetic screening technologies, implementation of screening systems that detect traces of explosive materials on passengers, and implementation of systems that generate images of passengers beneath their clothes for analysis by human screeners.
The security of the U.S. commercial aviation system has been a growing concern since the 1970's when the hijacking of aircraft became a serious problem. Over that period, federal aviation officials have been searching for more effective ways for non-invasive screening of passengers, luggage, and cargo to detect concealed explosives and weapons. To assist in this effort, the Transportation Security Administration (TSA) asked the NRC for a study of emerging screening technologies. This report-the third of four-focuses on currently maturing millimeter-wavelength/terahertz imaging and spectroscopy technologies that offer promise in meeting aviation security requirements. The report provides a description of the basic operation of these imaging systems, an assessment of their component technologies, an analysis of various system concepts, and an implementation strategy for deployment of millimeter-wavelength/terahertz technology screening systems.
A major goal of the Federal Aviation Administration (FAA), and now the Transportation Security Administration (TSA), is the development of technologies for detecting explosives and illegal drugs in freight cargo and passenger luggage. One such technology is pulsed fast neutron analysis (PFNA). This technology is based on detection of signature radiation (gamma rays) induced in material scanned by a beam of neutrons. While PFNA may have the potential to meet TSA goals, it has many limitations. Because of these issues, the government asked the National Research Council to evaluate the potential of PFNA for airport use and compare it with current and future x-ray technology. The results of this...
Thoroughly revised, reorganized, updated, and expanded, this widely-used text sets the balance and fills the gap between theory and practice in public policy studies. In a clear, conversational style, the author conveys the best current thinking on the policy process with an emphasis on accessibility and synthesis rather than novelty or abstraction. A newly added chapter surveys the social, economic, and demographic trends that are transforming the policy environment.